Limits of near-coloring of sparse graphs

Paul Dorbec, Tomáš Kaiser, Mickael Montassier, and André Raspaud

AIGCo Seminar, 2012

Near-coloring?

Definition - Near-Coloring

A graph G is (d_1, \ldots, d_k) -colorable, if and only if,

$$\blacktriangleright V(G) = V_1 \dot{\cup} \dots \dot{\cup} V_k$$

► $\forall i \in [1, k], \Delta(G[V_i]) \leq d_i$

$$(\underbrace{0,\ldots,0}_{k})$$
-coloring \Leftrightarrow proper k-coloring

►
$$V(G) = V_1 \cup ... \cup V_k$$

► $\forall i \in [1, k], \Delta(G[V_i]) = 0$

$$(\underbrace{d,\ldots,d}_k)$$
-coloring \Leftrightarrow *d*-improper *k*-coloring

$$\blacktriangleright V(G) = V_1 \dot{\cup} \dots \dot{\cup} V_k$$

$$\blacktriangleright \forall i \in [1, k], \Delta(G[V_i]) \leq d$$

Some history

4CT - Appel and Haken '76

Every planar graph is (0, 0, 0, 0)-colorable.

Theorem - Cowen, Cowen, and Woodall '86

Every planar graph is (2, 2, 2)-colorable.

[list version: Eaton and Hull '99, Škrekovski '99]

Sparse graphs?

 \Rightarrow graph with small maximum average degree

$$\operatorname{mad}(G) = \max\left\{\frac{2|E(H)|}{|V(H)|}, H \subseteq G\right\}$$

Theorem - Havet and Sereni '06 Every graph G with $mad(G) < k + \frac{kd}{k+d}$ is d-improperly k-colorable (in fact d-improperly k-choosable), i.e. $(\underbrace{d, \dots, d}_{k})$ -coloring.

Asymptotically sharp:

Theorem - Havet and Sereni '06

There exists a non-*d*-improperly *k*-colorable graph whose maximum average degree tends to 2k when *d* goes to infinity.

What about (d, 0)-coloring?

Bipartition V_1 , V_2 of V(G) such that:

 $\Delta(G[V_1]) \leq d$ and $G[V_2]$ is a stable set

(1, 0)-coloring

Theorem - Glebov and Zambalaeva '07

Every planar graph G with $g(G) \ge 16$ is (1,0)-colorable.

Theorem - Borodin and Ivanova '09

Every graph G with $mad(G) < \frac{7}{3}$ is (1, 0)-colorable.

 \Rightarrow Every planar graph G with $g(G) \ge 14$ is (1,0)-colorable.

Theorem - Borodin and Kostochka '11

Every graph G with $mad(G) \le \frac{12}{5}$ is (1,0)-colorable. Moreover $\frac{12}{5}$ is **sharp**.

 \Rightarrow Every planar graph G with $g(G) \ge 12$ is (1,0)-colorable.

Question

Smallest g such that all planar graphs G with $g(G) \ge g$ are (1,0)-colorable?

[Esperet, M. , Ochem, and Pinlou '12: $g \ge 10$ (there exist non-(1,0)-colorable planar graphs with girth 9).]

(d, 0)-coloring

Theorem - Borodin, Ivanova, M., Ochem, and Raspaud '10

- Let $d \ge 2$. Every graph G with $mad(G) < 3 \frac{2}{d+2}$ is (d, 0)-colorable.
- ► There exist non-(d, 0)-colorable graphs *G* with $mad(G) = (3 \frac{2}{d+2}) + \frac{1}{d+3}$.

Asymptotically sharp.

Theorem - Borodin and Kostochka '11

Let $d \ge 2$. Every graph G with $mad(G) \le 3 - \frac{1}{d+1}$ is (d,0)-colorable. Moreover $3 - \frac{1}{d+1}$ is **sharp**.

Problem

$$(\underbrace{d,\ldots,d}_{a},\underbrace{0,\ldots,0}_{b})$$
-coloring?

Partition of V in a + b sets: "a" subgraphs with maximum degree at most d "b" stable sets

What happens when $d \to \infty$?

Observation [Havet and Sereni '06] $G : \operatorname{mad}(G) < \underbrace{k + \frac{kd}{k+d}}_{l} \Rightarrow (\underbrace{d, \ldots, d}_{l})$ -coloring $\rightarrow 2k$ sharp [Borodin and Kostochka '11] $G: \operatorname{mad}(G) < \underbrace{3 - \frac{1}{d+1}}_{\rightarrow 3} \Rightarrow (d, 0)$ -coloring sharp Question

$$G : \operatorname{mad}(G) \to ? \Rightarrow (\underbrace{d, \ldots, d}_{a}, \underbrace{0, \ldots, 0}_{b})$$
-coloring

Largest value *m* such that every graph with mad < m is $(\underbrace{d, \ldots, d}_{a}, \underbrace{0, \ldots, 0}_{b})$ -colorable $(d \to \infty)$?

Case: (?,?,?)-coloring

Limits

Notation: $(\underbrace{d, \ldots, d}_{a}, \underbrace{0, \ldots, 0}_{b})$ -coloring $\Leftrightarrow (d, a, b)^*$ -coloring

Theorem - Dorbec, Kaiser, M. and Raspaud '12

Let a + b > 0 and d > 0.

- ► Every graph G with mad(G) < a + b + da(a+1) / (a+d+1)(a+1)+ab is (d, a, b)*-colorable.
- ► There exist non- $(d, a, b)^*$ -colorable graphs G with $mad(G) = 2a + b \frac{2}{(d+1)(b+1)-1} + \frac{2a+2}{(d+1)^{a+1}(b+1)^{a+1}-1}$.

Asymptotically sharp.

Answer

Largest value *m* such that every graph with mad < *m* is $\underbrace{(d, \ldots, d}_{a}, \underbrace{0, \ldots, 0}_{b}$ -colorable?
When $d \to \infty$: 2a + b.

Sketch of the proof

[1] reducible configurations + discharging procedure
[2] exhibit a non-(d, a, b)*-colorable graph G + compute mad(G)

$[1] - (d, a, b)^*$ -coloring

Let G be a counterexample with the minimum order.

Claim 0 $\delta(G) \geq a + b$

Define 3 objects:

Small vertex Big vertex

```
v: d_G(v) \leq a+b+d-1
Medium vertex v: a + b + d \le d_G(v) \le a + b + 2d - 1
         v: d_G(v) > a + b + 2d
```


Reducible configurations

Claim 1

A small vertex is adjacent to at least "a" non-small vertices.

Light small vertex:

A small vertex adjacent to exactly "a" non-small vertices.

Claim 2

A medium vertex is adjacent to at least "a - 1" non-small vertices and to at least "a - 1 + b" non-(light small) vertices

Claim 3

A big vertex is adjacent to at least "b" non-(light small) vertices

Discharging procedure - Aim Set m = mad(G)

Step 1 Assign to each vertex a charge equal to its degree:

$$\forall v \in V(G), \omega(v) = d_G(v)$$

Observe that:

$$\sum_{v\in V(G)}\omega(v)<|V(G)|\cdot m$$

Step 2 Move charges in order to have on each vertex v a new charge $\omega^*(v)$ such that :

$$\forall v \in V(G), \omega^*(v) \geq m$$

Step 3 The contradiction completes the proof:

$$|V(G)| \cdot m \leq \sum_{v \in V(G)} \omega^*(v) = \sum_{v \in V(G)} \omega(v) < |V(G)| \cdot m$$

Observation

- Small vertices need charge.
- Medium vertices have enough charge but not too much.
- Big vertices have charge.

Idea

- **R1.** A medium/big vertex gives *r*₁ to each adjacent light small vertex.
- **R2.** A medium/big vertex gives r_2 to each adjacent small vertex that is not light.

(With $r_1 \ge r_2$)

Let v be a vertex of degree k. [light small] $v : a + b \le d_G(v) \le a + b + d - 1$ $\omega^*(v) \ge k + a \times r_1$ by R1. $\ge a + b + a \times r_1 \ge m$

 $\begin{array}{ll} \left[\text{non-light small} \right] v : a + b \leq d_G(v) \leq a + b + d - 1 \\ \omega^*(v) &\geq k + (a + 1) \times r_2 \text{ by R2.} \\ &\geq a + b + (a + 1) \times r_2 \geq m \end{array}$

 $[medium] v : a + b + d \le d_G(v) \le a + b + 2d - 1$ $\omega^*(v) \ge k - (k - a - b + 1)r_1 - (a + b - 1 - (a - 1))r_2$ by R1, R2, C2 $\ge a + b + d - (d + 1)r_1 - br_2 \ge m$

 $\begin{bmatrix} \text{big} \end{bmatrix} v : d_G(v) \ge a + b + 2d \\ \omega^*(v) \ge k - (k - b)r_1 - br_2 \text{ by R1, R2, C3} \\ \ge a + b + 2d - (a + 2d)r_1 - br_2 \ge m \end{bmatrix}$

Find r_1, r_2, m maximizing m

$$r_{1} = \frac{d(a+1)}{(a+d+1)(a+1)+ab}$$

$$r_{2} = \frac{da}{(a+d+1)(a+1)+ab}$$

$$m = a+b+\frac{da(a+1)}{(a+d+1)(a+1)+ab}$$

$$orall v \in V(G), \omega^*(v) \ge m$$

 $|V(G)| \cdot m \le \sum_{v \in V(G)} \omega^*(v) = \sum_{v \in V(G)} \omega(v) < |V(G)| \cdot m$

 \square

[2] a non- $(d, a, b)^*$ -colorable graph: $G_{d,a,b}$

By induction on a. Case a = 0: $G_{d,0,b} = K_{b+1}$.

not $(d, 0, b)^*$ -colorable

[2] a non- $(d, a, b)^*$ -colorable graph: $G_{d,a,b}$ From a to a + 1.

 $G_{d,a,b}$ not $(d, a, b)^*$ -colorable \Rightarrow in any $(d, a + 1, b)^*$ -coloring, each copy contains a vertex of each color I_i for $1 \le i \le a + 1 \Rightarrow$ x must be colored with color 0_i for some $i \in \{1, ..., b\}$ [2] a non- $(d, a, b)^*$ -colorable graph: $G_{d,a,b}$

From a to a + 1: $G_{d,a+1,b}$

not $(d, a + 1, b)^*$ -colorable

$[2] \operatorname{mad}(G_{d,a,b})?$

Not so easy...

$$n = (b+1)\frac{(d+1)^{a+1}(b+1)^{a+1} - 1}{(d+1)(b+1) - 1}$$

$$e = (b+1)\frac{(d+1)^{a+1}(b+1)^{a+1}((a+\frac{b}{2})((d+1)(b+1)-1)-1) - \left(\frac{b}{2}-1\right)(d+1)(b+1) + \frac{b}{2}}{((d+1)(b+1)-1)^2}$$

$$mad(G) = ad(G) = \frac{2e}{n}$$

Conclusion

$$f(d, a, b) = a + b + \frac{da(a+1)}{(a+d+1)(a+1) + ab}$$

$$g(d, a, b) = 2a + b - \frac{2}{(d+1)(b+1) - 1} + \frac{2a+2}{(d+1)^{a+1}(b+1)^{a+1} - 1}$$
asymptotically sharp when $d \to \infty$

Largest value *m* such that every graph with mad < m is $(d, a, b)^*$ -colorable?

$$\mathfrak{f}(d, a, b) \leq m < \mathfrak{g}(d, a, b)$$