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Near-coloring?

Definition - Near-Coloring

A graph G is (d1, . . . , dk)-colorable, if and only if,

◮ V (G ) = V1∪̇ . . . ∪̇Vk

◮ ∀i ∈ [1, k],∆(G [Vi ]) ≤ di

(2, 1)-coloring



(0, . . . , 0
︸ ︷︷ ︸

k

)-coloring ⇔ proper k-coloring

◮ V (G ) = V1∪̇ . . . ∪̇Vk

◮ ∀i ∈ [1, k],∆(G [Vi ]) = 0

(d , . . . , d
︸ ︷︷ ︸

k

)-coloring ⇔ d -improper k-coloring

◮ V (G ) = V1∪̇ . . . ∪̇Vk

◮ ∀i ∈ [1, k],∆(G [Vi ]) ≤ d



Some history

4CT - Appel and Haken ’76

Every planar graph is (0, 0, 0, 0)-colorable.

Theorem - Cowen, Cowen, and Woodall ’86

Every planar graph is (2, 2, 2)-colorable.

[list version: Eaton and Hull ’99, Škrekovski ’99]



Sparse graphs?

⇒ graph with small maximum average degree

mad(G ) = max

{
2|E (H)|

|V (H)|
,H ⊆ G

}

Theorem - Havet and Sereni ’06

Every graph G with mad(G ) < k + kd

k+d
is d -improperly k-colorable

(in fact d -improperly k-choosable), i.e. (d , . . . , d
︸ ︷︷ ︸

k

)-coloring.

Asymptotically sharp:

Theorem - Havet and Sereni ’06

There exists a non-d -improperly k-colorable graph whose
maximum average degree tends to 2k when d goes to infinity.



What about (d , 0)-coloring?

Bipartition V1,V2 of V (G ) such that:

∆(G [V1]) ≤ d and G [V2] is a stable set



(1, 0)-coloring

Theorem - Glebov and Zambalaeva ’07

Every planar graph G with g(G ) ≥ 16 is (1, 0)-colorable.

Theorem - Borodin and Ivanova ’09

Every graph G with mad(G ) < 7
3 is (1, 0)-colorable.

⇒ Every planar graph G with g(G ) ≥ 14 is (1, 0)-colorable.



Theorem - Borodin and Kostochka ’11

Every graph G with mad(G ) ≤ 12
5 is (1, 0)-colorable.

Moreover 12
5 is sharp.
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⇒ Every planar graph G with g(G ) ≥ 12 is (1, 0)-colorable.

Question

Smallest g such that all planar graphs G with g(G ) ≥ g are
(1, 0)-colorable?

[Esperet, M. , Ochem, and Pinlou ’12: g ≥ 10
(there exist non-(1,0)-colorable planar graphs with girth 9).]



(d , 0)-coloring

Theorem - Borodin, Ivanova, M., Ochem, and Raspaud ’10

◮ Let d ≥ 2. Every graph G with mad(G ) < 3− 2
d+2 is

(d , 0)-colorable.

◮ There exist non-(d , 0)-colorable graphs G with
mad(G ) = (3− 2

d+2 ) +
1

d+3 .

Asymptotically sharp.

Theorem - Borodin and Kostochka ’11

Let d ≥ 2. Every graph G with mad(G ) ≤ 3− 1
d+1 is

(d , 0)-colorable.
Moreover 3− 1

d+1 is sharp.



Problem

◮ (d , . . . , d
︸ ︷︷ ︸

k

)-coloring

◮ (d , 0)-coloring

(d , . . . , d
︸ ︷︷ ︸

a

, 0, . . . , 0
︸ ︷︷ ︸

b

)-coloring?

Partition of V in a + b sets:
“a” subgraphs with maximum degree at most d
“b” stable sets



What happens when d → ∞?

Observation

[Havet and Sereni ’06]

G : mad(G ) < k +
kd

k + d
︸ ︷︷ ︸

→2k

⇒ (d , . . . , d
︸ ︷︷ ︸

k

)-coloring

sharp
[Borodin and Kostochka ’11]

G : mad(G ) < 3−
1

d + 1
︸ ︷︷ ︸

→3

⇒ (d , 0)-coloring

sharp

Question

G : mad(G ) →? ⇒ (d , . . . , d
︸ ︷︷ ︸

a

, 0, . . . , 0
︸ ︷︷ ︸

b

)-coloring

Largest value m such that every graph with mad < m is
(d , . . . , d
︸ ︷︷ ︸

a

, 0, . . . , 0
︸ ︷︷ ︸

b

)-colorable (d → ∞)?



Case: (?,?,?)-coloring

(d,0,0)−colorable

mad(G) 3 4 5 6

(0,0,0)−colorable

(d,d,0)−colorable

(d,d,d)−colorable [Havet and Sereni ’06]

K4



Idea

mad(G) 2a+ b

(d, . . . , d
︸ ︷︷ ︸

a

, 0, . . . , 0
︸ ︷︷ ︸

b

)-colorable

non-(d, . . . , d
︸ ︷︷ ︸

a

, 0, . . . , 0
︸ ︷︷ ︸

b

)-colorable graph

a+ b+ ?



Limits
Notation: (d , . . . , d

︸ ︷︷ ︸

a

, 0, . . . , 0
︸ ︷︷ ︸

b

)-coloring ⇔ (d , a, b)∗-coloring

Theorem - Dorbec, Kaiser, M. and Raspaud ’12

Let a + b > 0 and d > 0.

◮ Every graph G with mad(G ) < a + b + da(a+1)
(a+d+1)(a+1)+ab

is

(d , a, b)∗-colorable.

◮ There exist non-(d , a, b)∗-colorable graphs G with
mad(G ) = 2a + b − 2

(d+1)(b+1)−1 + 2a+2
(d+1)a+1(b+1)a+1−1

.

Asymptotically sharp.

Answer

Largest value m such that every graph with mad < m is
(d , . . . , d
︸ ︷︷ ︸

a

, 0, . . . , 0
︸ ︷︷ ︸

b

)-colorable?

When d → ∞: 2a + b.



Sketch of the proof

[1] reducible configurations + discharging procedure

[2] exhibit a non-(d , a, b)∗-colorable graph G + compute mad(G )



[1] - (d , a, b)∗-coloring

Let G be a counterexample with the minimum order.

Claim 0

δ(G ) ≥ a + b

Define 3 objects:

Small vertex v : dG (v) ≤ a+ b + d − 1
Medium vertex v : a + b + d ≤ dG (v) ≤ a + b + 2d − 1
Big vertex v : dG (v) ≥ a+ b + 2d

︷︸︸︷

a+ b

︷ ︸︸ ︷

a+ b+ d

︷ ︸︸ ︷

a+ b+ 2d

small medium big
a+ b+ d− 1
︸ ︷︷ ︸

a+ b+ 2d − 1
︸ ︷︷ ︸



Reducible configurations

Claim 1

A small vertex is adjacent to at least “a” non-small vertices.

Light small vertex:
A small vertex adjacent to exactly “a” non-small vertices.

Claim 2

A medium vertex is adjacent to at least “a − 1” non-small vertices
and to at least “a − 1 + b” non-(light small) vertices

Claim 3

A big vertex is adjacent to at least “b” non-(light small) vertices



Discharging procedure - Aim
Set m = mad(G )

Step 1 Assign to each vertex a charge equal to its degree:

∀v ∈ V (G ), ω(v) = dG (v)

Observe that:
∑

v∈V (G)

ω(v) < |V (G )| ·m

Step 2 Move charges in order to have on each vertex v a new charge
ω∗(v) such that :

∀v ∈ V (G ), ω∗(v) ≥ m

Step 3 The contradiction completes the proof:

|V (G )| ·m ≤
∑

v∈V (G)

ω∗(v) =
∑

v∈V (G)

ω(v) < |V (G )| ·m



Observation

◮ Small vertices need charge.

◮ Medium vertices have enough charge but not too much.

◮ Big vertices have charge.

Idea

R1. A medium/big vertex gives r1 to each adjacent light small
vertex.

R2. A medium/big vertex gives r2 to each adjacent small vertex
that is not light.

(With r1 ≥ r2)



Let v be a vertex of degree k .
[light small] v : a + b ≤ dG (v) ≤ a+ b + d − 1

ω∗(v) ≥ k + a× r1 by R1.

≥ a+ b + a× r1 ≥ m

[non-light small] v : a + b ≤ dG (v) ≤ a+ b + d − 1

ω∗(v) ≥ k + (a + 1)× r2 by R2.

≥ a+ b + (a + 1)× r2 ≥ m

[medium] v : a+ b + d ≤ dG (v) ≤ a+ b + 2d − 1

ω∗(v) ≥ k − (k − a− b + 1)r1 − (a+ b − 1− (a− 1))r2 by R1, R2, C2

≥ a+ b + d − (d + 1)r1 − br2 ≥ m

[big] v : dG (v) ≥ a+ b + 2d

ω∗(v) ≥ k − (k − b)r1 − br2 by R1, R2, C3

≥ a+ b + 2d − (a+ 2d)r1 − br2 ≥ m



[light small] a + b + a × r1 ≥ m

[non-light small] a + b + (a + 1)× r2 ≥ m

[medium] a + b + d − (d + 1)r1 − br2 ≥ m

[big] a + b + 2d − (a + 2d)r1 − br2 ≥ m

Find r1, r2,m maximizing m

r1 =
d(a + 1)

(a + d + 1)(a + 1) + ab

r2 =
da

(a + d + 1)(a + 1) + ab

m = a + b +
da(a+ 1)

(a + d + 1)(a + 1) + ab



∀v ∈ V (G ), ω∗(v) ≥ m

|V (G )| ·m ≤
∑

v∈V (G)

ω∗(v) =
∑

v∈V (G)

ω(v) < |V (G )| ·m

�



[2] a non-(d , a, b)∗-colorable graph: Gd ,a,b

By induction on a.
Case a = 0: Gd,0,b = Kb+1.

Kb+1

not (d , 0, b)∗-colorable



[2] a non-(d , a, b)∗-colorable graph: Gd ,a,b

From a to a + 1.

Fx

x
d+ 1 copies

Gd,a,b

Gd,a,b

Gd,a,b

Gd,a,b

Gd,a,b not (d , a, b)∗-colorable ⇒
in any (d , a + 1, b)∗-coloring, each copy contains a vertex of each
color Ii for 1 ≤ i ≤ a+ 1 ⇒
x must be colored with color 0i for some i ∈ {1, ..., b}



[2] a non-(d , a, b)∗-colorable graph: Gd ,a,b

From a to a + 1 : Gd,a+1,b

Kb+1

x3x4

x2

xb

x1xb+1

Fx2

Fx3

Fx4

Fxb

Fx1

Fxb+1

not (d , a + 1, b)∗-colorable



[2] mad(Gd ,a,b)?

Not so easy...

n = (b + 1)
(d + 1)a+1(b + 1)a+1

− 1

(d + 1)(b + 1) − 1

e = (b + 1)
(d + 1)a+1(b + 1)a+1((a + b

2
)((d + 1)(b + 1) − 1) − 1) −

(

b

2
− 1

)

(d + 1)(b + 1) + b

2

((d + 1)(b + 1) − 1)2

mad(G ) = ad(G ) =
2e

n



Conclusion

f(d , a, b) = a + b +
da(a+ 1)

(a + d + 1)(a + 1) + ab

g(d , a, b) = 2a+b−
2

(d + 1)(b + 1)− 1
+

2a + 2

(d + 1)a+1(b + 1)a+1 − 1

asymptotically sharp when d → ∞

Largest value m such that every graph with mad < m is
(d , a, b)∗-colorable?

f(d , a, b) ≤ m < g(d , a, b)


