Limits of near-coloring of sparse graphs

Paul Dorbec, Tomáś Kaiser, Mickael Montassier, and André Raspaud

AIGCo Seminar, 2012

Near-coloring?

Definition - Near-Coloring

A graph G is $\left(d_{1}, \ldots, d_{k}\right)$-colorable, if and only if,

- $V(G)=V_{1} \dot{\cup} \ldots V_{k}$
- $\forall i \in[1, k], \Delta\left(G\left[V_{i}\right]\right) \leq d_{i}$

$(2,1)$-coloring

$(\underbrace{0, \ldots, 0}_{k})$-coloring \Leftrightarrow proper k-coloring

- $V(G)=V_{1} \dot{\cup} \ldots \dot{\cup} V_{k}$
- $\forall i \in[1, k], \Delta\left(G\left[V_{i}\right]\right)=0$

$(\underbrace{d, \ldots, d}_{k})$-coloring $\Leftrightarrow d$-improper k-coloring

- $V(G)=V_{1} \dot{\cup} \ldots \dot{U} V_{k}$
- $\forall i \in[1, k], \Delta\left(G\left[V_{i}\right]\right) \leq d$

Some history

4CT - Appel and Haken '76
Every planar graph is ($0,0,0,0$)-colorable.
Theorem - Cowen, Cowen, and Woodall '86
Every planar graph is (2,2,2)-colorable.
[list version: Eaton and Hull '99, Škrekovski '99]

Sparse graphs?

\Rightarrow graph with small maximum average degree

$$
\operatorname{mad}(G)=\max \left\{\frac{2|E(H)|}{|V(H)|}, H \subseteq G\right\}
$$

Theorem - Havet and Sereni '06
Every graph G with $\operatorname{mad}(G)<k+\frac{k d}{k+d}$ is d-improperly k-colorable (in fact d-improperly k-choosable), i.e. $(\underbrace{d, \ldots, d}_{k})$-coloring.

Asymptotically sharp:

Theorem - Havet and Sereni '06

There exists a non- d-improperly k-colorable graph whose maximum average degree tends to $2 k$ when d goes to infinity.

What about $(d, 0)$-coloring?

Bipartition V_{1}, V_{2} of $V(G)$ such that:
$\Delta\left(G\left[V_{1}\right]\right) \leq d$ and $G\left[V_{2}\right]$ is a stable set

(1, 0)-coloring

Theorem - Glebov and Zambalaeva '07
Every planar graph G with $g(G) \geq 16$ is (1,0)-colorable.
Theorem - Borodin and Ivanova '09
Every graph G with $\operatorname{mad}(G)<\frac{7}{3}$ is $(1,0)$-colorable.
\Rightarrow Every planar graph G with $g(G) \geq 14$ is (1,0)-colorable.

Theorem - Borodin and Kostochka '11

Every graph G with $\operatorname{mad}(G) \leq \frac{12}{5}$ is $(1,0)$-colorable. Moreover $\frac{12}{5}$ is sharp.

\Rightarrow Every planar graph G with $g(G) \geq 12$ is $(1,0)$-colorable.

Question

Smallest g such that all planar graphs G with $g(G) \geq g$ are (1,0)-colorable?
[Esperet, M. , Ochem, and Pinlou '12: $g \geq 10$
(there exist non-(1,0)-colorable planar graphs with girth 9).]

$(d, 0)$-coloring

Theorem - Borodin, Ivanova, M., Ochem, and Raspaud '10

- Let $d \geq 2$. Every graph G with $\operatorname{mad}(G)<3-\frac{2}{d+2}$ is ($d, 0$)-colorable.
- There exist non- $(d, 0)$-colorable graphs G with $\operatorname{mad}(G)=\left(3-\frac{2}{d+2}\right)+\frac{1}{d+3}$.

Asymptotically sharp.
Theorem - Borodin and Kostochka '11
Let $d \geq 2$. Every graph G with $\operatorname{mad}(G) \leq 3-\frac{1}{d+1}$ is ($d, 0$)-colorable.
Moreover $3-\frac{1}{d+1}$ is sharp.

Problem

- $(\underbrace{d, \ldots, d}_{k})$-coloring
- $(d, 0)$-coloring

$$
(\underbrace{d, \ldots, d}_{a}, \underbrace{0, \ldots, 0}_{b}) \text {-coloring? }
$$

Partition of V in $a+b$ sets:
"a" subgraphs with maximum degree at most d " b " stable sets

What happens when $d \rightarrow \infty$?

Observation

[Havet and Sereni '06]
$G: \operatorname{mad}(G)<\underbrace{k+\frac{k d}{k+d}}_{\rightarrow 2 k} \Rightarrow(\underbrace{d, \ldots, d}_{k})$-coloring
sharp
[Borodin and Kostochka '11]
$G: \operatorname{mad}(G)<\underbrace{3-\frac{1}{d+1}}_{\rightarrow 3} \Rightarrow(d, 0)$-coloring
sharp
Question
$G: \operatorname{mad}(G) \rightarrow ? \Rightarrow(\underbrace{d, \ldots, d}_{a}, \underbrace{0, \ldots, 0}_{b})$-coloring
Largest value m such that every graph with mad $<m$ is
$(\underbrace{d, \ldots, d}_{a}, \underbrace{0, \ldots, 0}_{b})$-colorable $(d \rightarrow \infty)$?

Case: (?,?,?)-coloring

(d,d,d)-colorable [Havet and Sereni '06]
(d,d,0)-colorable
(d,0,0)-colorable

(0,0,0)-colorable K4

Idea

Limits

Notation: $(\underbrace{d, \ldots, d}_{a}, \underbrace{0, \ldots, 0}_{b})$-coloring $\Leftrightarrow(d, a, b)^{*}$-coloring
Theorem - Dorbec, Kaiser, M. and Raspaud '12
Let $a+b>0$ and $d>0$.

- Every graph G with $\operatorname{mad}(G)<a+b+\frac{d a(a+1)}{(a+d+1)(a+1)+a b}$ is ($d, a, b)^{*}$-colorable.
- There exist non- $(d, a, b)^{*}$-colorable graphs G with $\operatorname{mad}(G)=2 a+b-\frac{2}{(d+1)(b+1)-1}+\frac{2 a+2}{(d+1)^{a+1}(b+1)^{a+1}-1}$.

Asymptotically sharp.

Answer

Largest value m such that every graph with mad $<m$ is $(\underbrace{d, \ldots, d}_{a}, \underbrace{0, \ldots, 0}_{b})$-colorable?

$$
\text { When } d \rightarrow \infty: 2 a+b
$$

Sketch of the proof

[1] reducible configurations + discharging procedure
[2] exhibit a non- $(d, a, b)^{*}$-colorable graph $G+$ compute $\operatorname{mad}(G)$

[1] - $(d, a, b)^{*}$-coloring

Let G be a counterexample with the minimum order.
Claim 0
$\delta(G) \geq a+b$

Define 3 objects:
Small vertex $\quad v: d_{G}(v) \leq a+b+d-1$
Medium vertex $\quad v: a+b+d \leq d_{G}(v) \leq a+b+2 d-1$
Big vertex

$$
v: d_{G}(v) \geq a+b+2 d
$$

Reducible configurations

Claim 1

A small vertex is adjacent to at least "a" non-small vertices.
Light small vertex:
A small vertex adjacent to exactly "a" non-small vertices.

Claim 2

A medium vertex is adjacent to at least " $a-1$ " non-small vertices and to at least " $a-1+b$ " non-(light small) vertices

Claim 3

A big vertex is adjacent to at least " b " non-(light small) vertices

Discharging procedure - Aim

Set $m=\operatorname{mad}(G)$
Step 1 Assign to each vertex a charge equal to its degree:

$$
\forall v \in V(G), \omega(v)=d_{G}(v)
$$

Observe that:

$$
\sum_{v \in V(G)} \omega(v)<|V(G)| \cdot m
$$

Step 2 Move charges in order to have on each vertex v a new charge $\omega^{*}(v)$ such that :

$$
\forall v \in V(G), \omega^{*}(v) \geq m
$$

Step 3 The contradiction completes the proof:

$$
|V(G)| \cdot m \leq \sum_{v \in V(G)} \omega^{*}(v)=\sum_{v \in V(G)} \omega(v)<|V(G)| \cdot m
$$

Observation

- Small vertices need charge.
- Medium vertices have enough charge but not too much.
- Big vertices have charge.

Idea
R1. A medium/big vertex gives r_{1} to each adjacent light small vertex.
R2. A medium/big vertex gives r_{2} to each adjacent small vertex that is not light.
(With $r_{1} \geq r_{2}$)

Let v be a vertex of degree k.
[light small] $v: a+b \leq d_{G}(v) \leq a+b+d-1$

$$
\begin{aligned}
\omega^{*}(v) & \geq k+a \times r_{1} \text { by R1. } \\
& \geq a+b+a \times r_{1} \geq m
\end{aligned}
$$

[non-light small] $v: a+b \leq d_{G}(v) \leq a+b+d-1$

$$
\begin{aligned}
\omega^{*}(v) & \geq k+(a+1) \times r_{2} \text { by R } 2 . \\
& \geq a+b+(a+1) \times r_{2} \geq m
\end{aligned}
$$

[medium] $v: a+b+d \leq d_{G}(v) \leq a+b+2 d-1$

$$
\begin{aligned}
\omega^{*}(v) & \geq k-(k-a-b+1) r_{1}-(a+b-1-(a-1)) r_{2} \text { by R1, R2, C2 } \\
& \geq a+b+d-(d+1) r_{1}-b r_{2} \geq m
\end{aligned}
$$

$[b i g] v: d_{G}(v) \geq a+b+2 d$

$$
\begin{aligned}
\omega^{*}(v) & \geq k-(k-b) r_{1}-b r_{2} \text { by R1, R2, C3 } \\
& \geq a+b+2 d-(a+2 d) r_{1}-b r_{2} \geq m
\end{aligned}
$$

[light small] $a+b+a \times r_{1} \geq m$
[non-light small] $a+b+(a+1) \times r_{2} \geq m$

$$
\begin{aligned}
& \text { [medium] } a+b+d-(d+1) r_{1}-b r_{2} \geq m \\
& \text { [big] } a+b+2 d-(a+2 d) r_{1}-b r_{2} \geq m \\
& \hline
\end{aligned}
$$

Find r_{1}, r_{2}, m maximizing m

$$
\begin{aligned}
r_{1} & =\frac{d(a+1)}{(a+d+1)(a+1)+a b} \\
r_{2} & =\frac{d a}{(a+d+1)(a+1)+a b} \\
m & =a+b+\frac{d a(a+1)}{(a+d+1)(a+1)+a b}
\end{aligned}
$$

$$
\begin{gathered}
\forall v \in V(G), \omega^{*}(v) \geq m \\
|V(G)| \cdot m \leq \sum_{v \in V(G)} \omega^{*}(v)=\sum_{v \in V(G)} \omega(v)<|V(G)| \cdot m
\end{gathered}
$$

[2] a non- $(d, a, b)^{*}$-colorable graph: $G_{d, a, b}$

By induction on a.
Case $a=0: \quad G_{d, 0, b}=K_{b+1}$.

not $(d, 0, b)^{*}$-colorable

[2] a non- $(d, a, b)^{*}$-colorable graph: $G_{d, a, b}$

From a to $a+1$.

$G_{d, a, b}$ not $(d, a, b)^{*}$-colorable \Rightarrow
in any $(d, a+1, b)^{*}$-coloring, each copy contains a vertex of each color l_{i} for $1 \leq i \leq a+1 \Rightarrow$
\times must be colored with color 0_{i} for some $i \in\{1, \ldots, b\}$

[2] a non- $(d, a, b)^{*}$-colorable graph: $G_{d, a, b}$

From a to $a+1: G_{d, a+1, b}$

not $(d, a+1, b)^{*}$-colorable

[2] $\operatorname{mad}\left(G_{d, a, b}\right)$?

Not so easy...

$$
\begin{gathered}
n=(b+1) \frac{(d+1)^{a+1}(b+1)^{a+1}-1}{(d+1)(b+1)-1} \\
e=(b+1) \frac{(d+1)^{a+1}(b+1)^{a+1}\left(\left(a+\frac{b}{2}\right)((d+1)(b+1)-1)-1\right)-\left(\frac{b}{2}-1\right)(d+1)(b+1)+\frac{b}{2}}{((d+1)(b+1)-1)^{2}}
\end{gathered}
$$

$$
\operatorname{mad}(G)=\operatorname{ad}(G)=\frac{2 e}{n}
$$

Conclusion

$$
\begin{gathered}
\mathfrak{f}(d, a, b)=a+b+\frac{d a(a+1)}{(a+d+1)(a+1)+a b} \\
\mathfrak{g}(d, a, b)=2 a+b-\frac{2}{(d+1)(b+1)-1}+\frac{2 a+2}{(d+1)^{a+1}(b+1)^{a+1}-1}
\end{gathered}
$$

$$
\text { asymptotically sharp when } d \rightarrow \infty
$$

Largest value m such that every graph with mad $<m$ is $(d, a, b)^{*}$-colorable?

$$
\mathfrak{f}(d, a, b) \leq m<\mathfrak{g}(d, a, b)
$$

