Separation of cliques and stable sets

Nicolas Bousquet Aurélie Lagoutte Stéphan Thomassé

Séminaire AIGCo¹

^{1.} Slides by Nicolas Bousquet and Aurélie Lagoutte

- CL-IS problem
- Extended formulations
- Some classes of graphs

2 Alon-Saks-Seymour Conjecture

- A generalization of Graham-Pollack
- Equivalence theorem

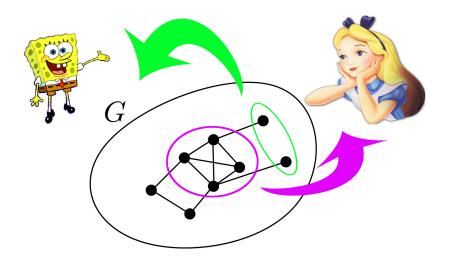
3 Constraint satisfaction problem

Alon-Saks-Seymour Conjecture

Constraint satisfaction probler

Prospects

Clique vs Independent Set Problem

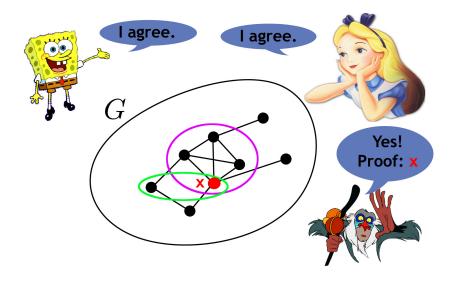


Alon-Saks-Seymour Conjecture

Constraint satisfaction probler

Prospects

Clique vs Independent Set Problem : Non-det. version

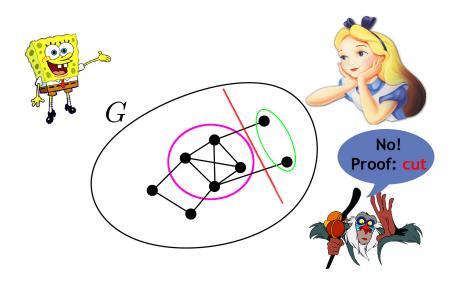


Alon-Saks-Seymour Conjecture

Constraint satisfaction probler

Prospects

Clique vs Independent Set Problem : Non-det. version



Alon-Saks-Seymour Conjecture

Constraint satisfaction probler

Prospects

Clique vs Independent Set Problem

Goal

Find a *CS-separator* : a family of cuts separating all the pairs Clique-Stable set.

Clique vs Independent Set Problem

Goal

Find a *CS-separator* : a family of cuts separating all the pairs Clique-Stable set.

Theorem (Yannakakis '91)

Non-deterministic communication complexity = log m where m is the minimal size of a CS-separator. If $m = n^c$, then complexity= $O(\log n)$.

Clique vs Independent Set Problem

Goal

Find a *CS-separator* : a family of cuts separating all the pairs Clique-Stable set.

Theorem (Yannakakis '91)

Non-deterministic communication complexity = log m where m is the minimal size of a CS-separator. If $m = n^c$, then complexity= $O(\log n)$.

Idea : Covering the Clique - Stable Set matrix with monochromatic rectangles.

Alon-Saks-Seymour Conjecture

Constraint satisfaction problem

Prospects

CL-IS problem : Bounds

Upper bound

There is a Clique-Stable separator of size $\mathcal{O}(n^{\log n})$.

Alon-Saks-Seymour Conjecture

Constraint satisfaction problem

Prospects

CL-IS problem : Bounds

Upper bound

There is a Clique-Stable separator of size $\mathcal{O}(n^{\log n})$.

Lower bound

There are some graphs with no CS-separator of size less than $n^{6/5}$.

Alon-Saks-Seymour Conjecture

Constraint satisfaction problem

Prospects

CL-IS problem : Bounds

Upper bound

There is a Clique-Stable separator of size $\mathcal{O}(n^{\log n})$.

Lower bound

There are some graphs with no CS-separator of size less than $n^{6/5}$.

Question

Does there exists for all graph G on n vertices a CS-separator of size poly(n)?

Extended formulations : Definitions

Stable set polytope

- *n* dimensionnal space.
- Characteristic vector of $S : \chi_v^S = 1$ if $v \in S$.
- Number of constraints needed to define this polytope?

Extended formulations : Definitions

Stable set polytope

- *n* dimensionnal space.
- Characteristic vector of $S : \chi_v^S = 1$ if $v \in S$.
- Number of constraints needed to define this polytope?

Extented formulation

Free to increase the dimension, what is the minimum number of half-spaces necessary to define the polytope?

Extended formulations : Definitions

Stable set polytope

- *n* dimensionnal space.
- Characteristic vector of $S : \chi_v^S = 1$ if $v \in S$.
- Number of constraints needed to define this polytope?

Extented formulation

Free to increase the dimension, what is the minimum number of half-spaces necessary to define the polytope?

Reformulation

Free to add new variables, what is the minimum number of constraints needed to find the set of solutions?

Alon-Saks-Seymour Conjecture

Constraint satisfaction problem

Prospects

Extended formulations and CL-IS problem

Implication (Yannakakis '91)

If the Stable Set polytope has a polynomial extended formulation, then the Clique vs Stable Problem has a $O(\log n)$ solution.

Alon-Saks-Seymour Conjecture

Constraint satisfaction problem

Prospects

Extended formulations and CL-IS problem

Implication (Yannakakis '91)

If the Stable Set polytope has a polynomial extended formulation, then the Clique vs Stable Problem has a $O(\log n)$ solution.

 \Rightarrow Fiorini et al. (2012) disprove the existence of such an extended formulation for the stable set polytope.

Alon-Saks-Seymour Conjecture

Constraint satisfaction proble

Prospects

Random graphs

Theorem (B., Lagoutte, Thomassé)

There is a $\mathcal{O}(n^{5+\epsilon})$ CS-separator for random graphs.

Alon-Saks-Seymour Conjecture

Constraint satisfaction problem

Prospects

Random graphs

Theorem (B., Lagoutte, Thomassé)

There is a $\mathcal{O}(n^{5+\epsilon})$ CS-separator for random graphs.

Proof :

Let p be the probability of an edge. \Rightarrow Draw randomly a partition (A, B).

A vertex v is in A with probability p and is in B otherwise.

 \Rightarrow Draw $\mathcal{O}(n^{5+\epsilon})$ such partitions.

W.h.p. there is a partition which separates C, S.

Alon-Saks-Seymour Conjecture

Constraint satisfaction proble

Prospects

Split-free graphs

Theorem

Let H be a split graph. There is a polynomial CS-separator for H-free graphs.

Alon-Saks-Seymour Conjecture

Constraint satisfaction problem

Prospects

Split-free graphs

Theorem

Let H be a split graph. There is a polynomial CS-separator for H-free graphs.

Idea : $\mathcal{O}(|\mathcal{H}|)$ vertices of the clique "simulate" the pair C,S.

- CL-IS problem
- Extended formulations
- Some classes of graphs

2 Alon-Saks-Seymour Conjecture

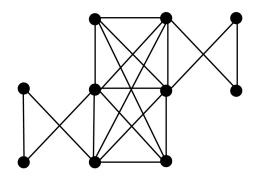
- A generalization of Graham-Pollack
- Equivalence theorem

Alon-Saks-Seymour Conjecture

Constraint satisfaction proble

Prospects

Bipartite packing bp(G)



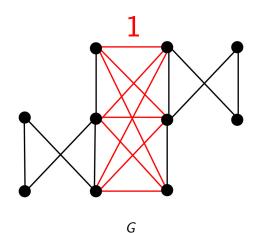
G

Alon-Saks-Seymour Conjecture

Constraint satisfaction problem

Prospects

Bipartite packing bp(G)

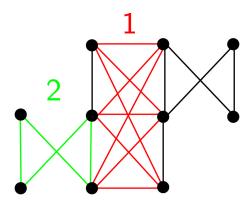


Alon-Saks-Seymour Conjecture

Constraint satisfaction problem

Prospects

Bipartite packing bp(G)



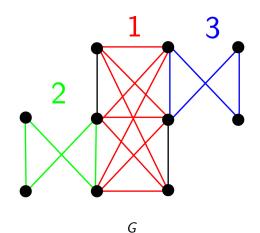
G

Alon-Saks-Seymour Conjecture

Constraint satisfaction problem

Prospects

Bipartite packing bp(G)

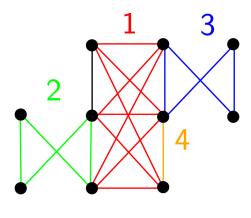


Alon-Saks-Seymour Conjecture

Constraint satisfaction problem

Prospects

Bipartite packing bp(G)



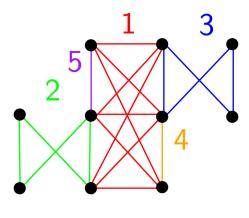
G

Alon-Saks-Seymour Conjecture

Constraint satisfaction problem

Prospects

Bipartite packing bp(G)



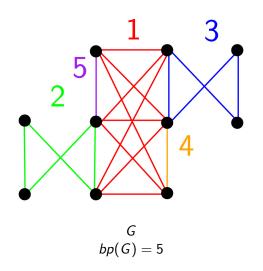
G

Alon-Saks-Seymour Conjecture

Constraint satisfaction problem

Prospects

Bipartite packing bp(G)



Alon-Saks-Seymour Conjecture

Constraint satisfaction problem

Prospects

Graham Pollack

Graham-Pollak theorem, 1971

 $\operatorname{bp}(K_n)=n-1$

Alon-Saks-Seymour Conjecture

Constraint satisfaction problem

Prospects

Graham Pollack

Graham-Pollak theorem, 1971

 $\operatorname{bp}(K_n)=n-1$

•
$$\operatorname{bp}(K_n) \leq n-1$$

Alon-Saks-Seymour Conjecture

Constraint satisfaction problem

Prospects

Graham Pollack

Graham-Pollak theorem, 1971

 $\operatorname{bp}(K_n) = n-1$

Proof

•
$$\operatorname{bp}(K_n) \leq n-1$$

• $bp(K_n) \ge n-1$: Tverberg proof via polynomials

Alon-Saks-Seymour Conjecture

Constraint satisfaction problem

Prospects

Graham Pollack

Graham-Pollak theorem, 1971

 $\operatorname{bp}(K_n)=n-1$

- $\operatorname{bp}(K_n) \leq n-1$
- $bp(K_n) \ge n-1$: Tverberg proof via polynomials
- $\operatorname{bp}(K_n) \ge n/2$

Alon-Saks-Seymour Conjecture

Constraint satisfaction problem

Prospects

Graham Pollack

Graham-Pollak theorem, 1971

 $\operatorname{bp}(K_n)=n-1$

- $\operatorname{bp}(K_n) \leq n-1$
- $bp(K_n) \ge n-1$: Tverberg proof via polynomials
- $\operatorname{bp}(K_n) \ge n/2$

$$K_n = \biguplus_{i=1}^k B_i \Leftrightarrow \operatorname{Adj}(K_n) = \sum_{i=1}^k \operatorname{Adj}(B_i).$$

Alon-Saks-Seymour Conjecture

Constraint satisfaction problem

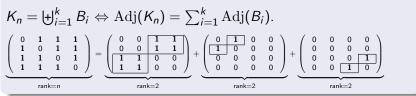
Prospects

Graham Pollack

Graham-Pollak theorem, 1971

 $\operatorname{bp}(K_n)=n-1$

- $\operatorname{bp}(K_n) \leq n-1$
- $bp(K_n) \ge n-1$: Tverberg proof via polynomials
- $\operatorname{bp}(K_n) \ge n/2$



Alon-Saks-Seymour Conjecture

Constraint satisfaction probler

Prospects

Alon-Saks-Seymour conjecture

Graham-Pollak theorem '71

 $\operatorname{bp}(K_n) = n-1$

Alon-Saks-Seymour Conjecture

Constraint satisfaction probler

Prospects

Alon-Saks-Seymour conjecture

Graham-Pollak theorem '71

 $\operatorname{bp}(K_n) = n-1$

Alon-Saks-Seymour conjecture '74

 $\chi \leq \mathrm{bp} + 1.$

Alon-Saks-Seymour Conjecture

Constraint satisfaction problem

Prospects

Alon-Saks-Seymour conjecture

Graham-Pollak theorem '71

 $\operatorname{bp}(K_n) = n-1$

Alon-Saks-Seymour conjecture '74

 $\chi \leq \mathrm{bp}+1.$

Counter-example (Huang, Sudakov '10)

There exists G such that $\chi \ge bp^{6/5}$. Upper bound : $\chi \le \mathcal{O}(bp^{\log bp})$.

Alon-Saks-Seymour Conjecture

Constraint satisfaction problem

Prospects

Alon-Saks-Seymour conjecture

Graham-Pollak theorem '71

 $\operatorname{bp}(K_n) = n-1$

Alon-Saks-Seymour conjecture '74

 $\chi \leq bp + 1.$

Counter-example (Huang, Sudakov '10)

There exists G such that $\chi \ge bp^{6/5}$. Upper bound : $\chi \le \mathcal{O}(bp^{\log bp})$.

Question : Polynomial Alon-Saks-Seymour conjecture

Does there exists P such that for all G, $\chi \leq P(bp)$.

Equivalence

Theorem (B., Lagoutte, Thomassé)

The following statements are equivalent :

- There is a polynomial P such that for all graphs G, $\chi \leq P(bp)$.
- For every graph G, there is a polynomial CS-separator.

Equivalence

Theorem (B., Lagoutte, Thomassé)

The following statements are equivalent :

- There is a polynomial P such that for all graphs G, $\chi \leq P(bp)$.
- For every graph G, there is a polynomial CS-separator.

Remark : One direction was already known.

Alon-Saks-Seymour Conjecture

Constraint satisfaction problem

Prospects

Hierarchy of bp_i

Definition

bp means that every edge can be covered once.

 bp_i means that every edge can be covered at most *i* times.

Hierarchy of bp_i

Definition

bp means that every edge can be covered once.

 bp_i means that every edge can be covered at most *i* times.

Theorem

There is a polynomial P such that for all graphs G, $\chi \leq P(bp)$ iff for every i, there is a polynomial P such that for all graphs G, $\chi \leq P(bp_i)$.

Hierarchy of bp_i

Definition

 bp means that every edge can be covered once.

 bp_i means that every edge can be covered at most *i* times.

Theorem

There is a polynomial P such that for all graphs G, $\chi \leq P(bp)$ iff for every i, there is a polynomial P such that for all graphs G, $\chi \leq P(bp_i)$.

A particular case : oriented bp

 bp^o means that every edge can be covered at most once in each direction.

Remark

$$\mathrm{bp}_2 \leq \mathrm{bp}^o \leq \mathrm{bp}.$$

Alon-Saks-Seymour Conjecture

Constraint satisfaction problem

Prospects

A further study of <u>bp^o</u>

 $bp(K_n)$

•
$$bp(K_n) = n - 1$$

Alon-Saks-Seymour Conjecture

Constraint satisfaction problem

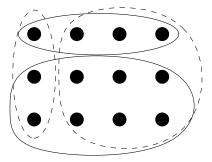
Prospects

A further study of *bp*^o

 $bp(K_n)$

• $bp(K_n) = n - 1$.

•
$$bp_2(K_n) = \mathcal{O}(\sqrt{n})$$



Alon-Saks-Seymour Conjecture

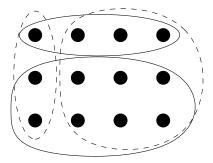
Constraint satisfaction problem

Prospects

A further study of $bp^{o^{\dagger}}$

$bp(K_n)$

- $bp(K_n) = n 1$.
- $bp_2(K_n) = \mathcal{O}(\sqrt{n})$
- *bp*^o(*K*_n)?



Alon-Saks-Seymour Conjecture

Constraint satisfaction problem

Prospects

CL-IS and bp^o

Theorem

There is a polynomial CS-separator iff there is a polynomial P such that for all graphs G, $\chi \leq P(bp^{o})$.

CL-IS and bp^o

Theorem

There is a polynomial CS-separator iff there is a polynomial P such that for all graphs G, $\chi \leq P(bp^{o})$.

$\mathsf{Proof} \Leftarrow$

- Vertices : Pairs (C, S).
- Edges between (C, S) and (C', S') if $x \in C \cap S'$.
- Bipartite packing? n.

CL-IS and bp^o

Theorem

There is a polynomial CS-separator iff there is a polynomial P such that for all graphs G, $\chi \leq P(bp^{\circ})$.

$\mathsf{Proof} \Leftarrow$

- Vertices : Pairs (C, S).
- Edges between (C, S) and (C', S') if $x \in C \cap S'$.
- Bipartite packing? n.

$\mathsf{Proof} \Rightarrow$

- Vertices : bipartite graph (A, B).
- Edges : (A, B) and (A', B') if $x \in A \cap A'$.
- There are cuts separating (C_x, S_x) .

Constraint satisfaction problem

Prospects

Clique-Stable set separation

- CL-IS problem
- Extended formulations
- Some classes of graphs

2 Alon-Saks-Seymour Conjecture

- A generalization of Graham-Pollack
- Equivalence theorem

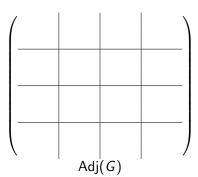
3 Constraint satisfaction problem

Alon-Saks-Seymour Conjecture

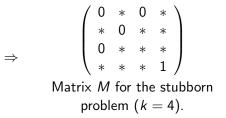
Constraint satisfaction problem

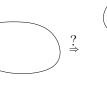
Prospects

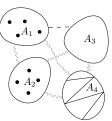
List-M partition problems



G



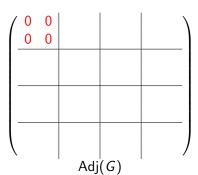


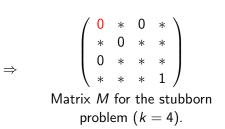


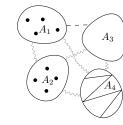
Alon-Saks-Seymour Conjecture

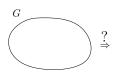
Constraint satisfaction problem

Prospects





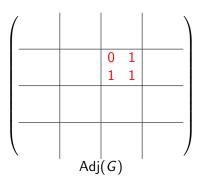


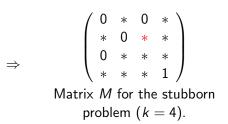


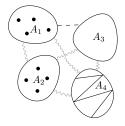
Alon-Saks-Seymour Conjecture

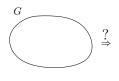
Constraint satisfaction problem

Prospects





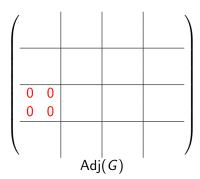


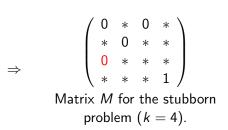


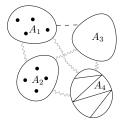
Alon-Saks-Seymour Conjecture

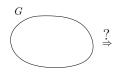
Constraint satisfaction problem

Prospects





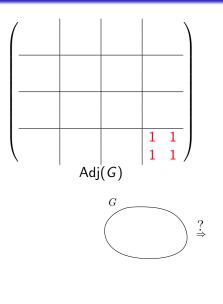


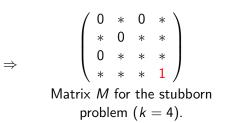


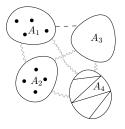
Alon-Saks-Seymour Conjecture

Constraint satisfaction problem

Prospects







Constraint satisfaction problem

Feder & Hell : Dichotomy theorem ?

Classification P or NP-complete for small matrices, $k \leq 3$. Classification for k = 4 except for the stubborn problem.

Constraint satisfaction problem

Feder & Hell : Dichotomy theorem?

Classification P or NP-complete for small matrices, $k \leq 3$. Classification for k = 4 except for the stubborn problem.

Existing bound

The stubborn problem can be solved in time $\mathcal{O}(n^{\log n})$ via decomposition into $\mathcal{O}(n^{\log n})$ instances of 2-SAT.

Constraint satisfaction problem

Feder & Hell : Dichotomy theorem ?

Classification P or NP-complete for small matrices, $k \le 3$. Classification for k = 4 except for the stubborn problem.

Existing bound

The stubborn problem can be solved in time $\mathcal{O}(n^{\log n})$ via decomposition into $\mathcal{O}(n^{\log n})$ instances of 2-SAT.

Complexity result

Cygan et al, 2010 : The stubborn problem is in P.

Feder & Hell : Dichotomy theorem ?

Classification P or NP-complete for small matrices, $k \leq 3$. Classification for k = 4 except for the stubborn problem.

Existing bound

The stubborn problem can be solved in time $\mathcal{O}(n^{\log n})$ via decomposition into $\mathcal{O}(n^{\log n})$ instances of 2-SAT.

Complexity result

Cygan et al, 2010 : The stubborn problem is in P.

Question

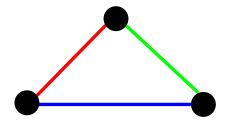
Decomposing the stubborn problem into P(n) instances of 2-SAT?

Alon-Saks-Seymour Conjecture

Constraint satisfaction problem

Prospects

3-COMPATIBLE COLORING PROBLEM

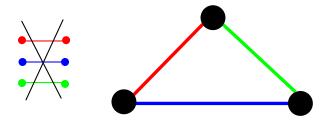


Alon-Saks-Seymour Conjecture

Constraint satisfaction problem

Prospects

3-COMPATIBLE COLORING PROBLEM

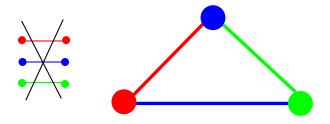


Alon-Saks-Seymour Conjecture

Constraint satisfaction problem

Prospects

3-COMPATIBLE COLORING PROBLEM

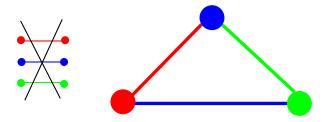


Alon-Saks-Seymour Conjecture

Constraint satisfaction problem

Prospects

3-COMPATIBLE COLORING PROBLEM



Existing bound

3-CCP can be decomposed into $\mathcal{O}(n^{\log n})$ instances of 2-SAT.

Equivalence theorem

Equivalence theorem

The following are equivalent :

- There is a polynomial P such that for all graphs G, χ ≤ P(bp).
- ② For every integer *i*, there is a polynomial *P* such that for all graphs *G*, *χ* ≤ *P*(bp_i).
- **③** For every graph G, there is a polynomial CS-separator.
- For every graph G and every list assignment

 L : V → P({A₁, A₂, A₃, A₄}), there is a polynomial 2-list covering for the stubborn problem on (G, L).
- For every *n* and every edge-coloring $f : E(K_n) \to \{A, B, C\}$, there is a polynomial 2-list covering for 3-CCP on (K_n, f) .

- CL-IS problem
- Extended formulations
- Some classes of graphs

2 Alon-Saks-Seymour Conjecture

- A generalization of Graham-Pollack
- Equivalence theorem

3 Constraint satisfaction problem

Constraint satisfaction problem

Prospects

Prospects

• Solve one problem and deduce the others!

Prospects

- Solve one problem and deduce the others!
- Find a combinatorial proof of a linear bound for Graham-Pollack.

Prospects

- Solve one problem and deduce the others!
- Find a combinatorial proof of a linear bound for Graham-Pollack.
- Study the Clique-Stable set separation on P_4 -free graphs, P_k -free graphs.

Prospects

- Solve one problem and deduce the others !
- Find a combinatorial proof of a linear bound for Graham-Pollack.
- Study the Clique-Stable set separation on P_4 -free graphs, P_k -free graphs.
- Study the Clique-Stable separation on perfect graphs thanks to structure theorem.

Alon-Saks-Seymour Conjecture

Constraint satisfaction proble

Prospects

Questions

Thanks for your attention.