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FPT Algorithm

An FPT algorithm for a parameterized problem is an algorithm that exactly solves
the problem in O(f (k).poly(n)) where n is the size of the instance and k the
parameter of the instance.

Polynomial-Time Approximation Scheme

A PTAS for a minimization problem is an algorithm Aǫ such that for any fixed
ǫ > 0, Aǫ runs in polynomial time and outputs a solution of cost < (1 + ǫ)OPT
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Any element of Γs(C
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We now bound the size of Γs(C
∗) :

yi = B ⇒ there exists a clique of size B in the solution
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√
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and each step of the dynamic programming runs in FPT time.

Theorem

k-Sparsest Subgraph in Interval Graphs is FPT parameterized by the cost of the
solution.
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sorting intervals according to their right endpoints

greedy decomposition of the graph into a path of separators

re-structuration of an optimal solution into a near optimal solution such that
all near optimal solutions can be enumerated in polynomial time

dynamic programming processes the graph through the decomposition,
enumerating all possible solutions.
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PTAS in Proper Interval Graphs
The decomposition

Remark

The only edges between blocks Bi and Bi+1 are between Ri and Li+1.
Given S ⊆ I we have:

E (S) =
a

∑

i=1

E (Bi ∩ S) +
a−1
∑

i=1

E (Ri ∩ S , Li+1 ∩ S)
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PTAS in Proper Interval Graphs
Re-structuration of optimal solutions

Compaction

Let S ⊆ I be a solution, and Sc = comp(S) ⊆ I such that for each block
i ∈ {1, ..., a}:

for all I ∈ Li , comp(I ) ∈ Li and is at the right of I (we may have
comp(I ) = I )

for all I ∈ Ri , comp(I ) ∈ Ri and is at the left of I (we may have comp(I ) = I )
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PTAS in Proper Interval Graphs
Re-structuration of optimal solutions

Compaction

Let S ⊆ I be a solution, and Sc = comp(S) ⊆ I such that for each block
i ∈ {1, ..., a}:

for all I ∈ Li , comp(I ) ∈ Li and is at the right of I (we may have
comp(I ) = I )

for all I ∈ Ri , comp(I ) ∈ Ri and is at the left of I (we may have comp(I ) = I )

Lemma

If comp is a compaction of a solution S such that for all block i ∈ {1, ..., a}, we
have

E (comp(S ∩ Bi )) ≤ ρE (S ∩ Bi )

Then comp(S) is a ρ-approximation of S .
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Re-structuration of optimal solutions

Let us built a compaction that yields a (1 + 4
P
)-approximation for any fixed P.
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Let X⊆ Bi be a solution. We note X =XL ∪XR . Set sizes are in lowercase.

we divide XL into P consecutive subsets of same size qL → X L
1 , ...,X

L

P

we divide XR into P consecutive subsets of same size qR → XR
1 , ...,XR

P

Then define the compaction: for any t ∈ {1, ...,P}
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)-approximation for any fixed P.

Let X⊆ Bi be a solution. We note X =XL ∪XR . Set sizes are in lowercase.

we divide XL into P consecutive subsets of same size qL → X L
1 , ...,X

L

P

we divide XR into P consecutive subsets of same size qR → XR
1 , ...,XR

P

Then define the compaction: for any t ∈ {1, ...,P}
Y L

t are the qL rightmost intervals at the left of the rightmost interval of X L
t

Y R
t are the qR leftmost intervals at the right of the leftmost interval of XR

t

Imi

Li

Ri

X L
1

X L

P

XR
1

XR

P

qL

qL

qR

qR

Y L
1

Y L

P

Y R
1

Y R

P
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PTAS in Proper Interval Graphs
Re-structuration of optimal solutions

What do we need to construct such a solution ?

Imi

Li

Ri

X L
1

X L

P

XR
1

XR

P

qL

qL

qR

qR

Y L
1

Y L

P

Y R
1

Y R

P
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PTAS in Proper Interval Graphs
Re-structuration of optimal solutions

What do we need to construct such a solution ?

the leftmost interval of X L
t for t ∈ {1, ...,P}

the rightmost interval of XR
t for t ∈ {1, ...,P}

xR , xL (plus remainders of divisions by P...)

⇒ 2P + O(1) variables ranging in {0, ..., n}

Imi

Li

Ri

X L
1

X L

P

XR
1

XR

P

qL

qL

qR

qR

Y L
1

Y L

P

Y R
1

Y R

P
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Imi
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Ri

X L
1

X L

P

XR
1

XR

P

qL

qL

qR

qR

Y L
1

Y L

P

Y R
1

Y R

P

Sketch of proof of the (1 + 4
P
) approximation ratio:
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1
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Y R
1

Y R

P

Sketch of proof of the (1 + 4
P
) approximation ratio:

OPT=
(

xL

2

)

+
(

xR

2

)

+
∑a

t=1

∑a

u=1 E (X L
t ,XR

u )

SOL =
(

xL

2

)

+
(

xR

2

)

+
∑a

t=1

∑a

u=1 E (Y L
t ,Y R

u )
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Sketch of proof of the (1 + 4
P
) approximation ratio:

OPT=
(

xL
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)

+
(
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2

)

+
∑a

t=1

∑a

u=1 E (X L
t ,XR

u )

SOL =
(

xL

2

)

+
(

xR

2

)

+
∑a

t=1

∑a

u=1 E (Y L
t ,Y R

u )

But:
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Ri

t

u

Sketch of proof of the (1 + 4
P
) approximation ratio:

OPT=
(

xL

2

)

+
(

xR

2

)

+
∑a

t=1

∑a

u=1 E (X L
t ,XR

u )

SOL =
(

xL

2

)

+
(

xR

2

)

+
∑a

t=1

∑a

u=1 E (Y L
t ,Y R

u )

But:

if some intervals of Y L
t overlap some intervals of Y R

u

Then:

all intervals of X L
t+1 overlap all intervals of

⋃u−1

i=1 XR

i
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Sketch of proof of the (1 + 4
P
) approximation ratio:

OPT=
(

xL

2

)

+
(

xR

2

)

+
∑a

t=1

∑a

u=1 E (X L
t ,XR

u )

SOL =
(

xL

2

)

+
(

xR

2

)

+
∑a

t=1

∑a

u=1 E (Y L
t ,Y R

u )

But:

if some intervals of Y L
t overlap some intervals of Y R

u

Then:

all intervals of X L
t+1 overlap all intervals of

⋃u−1

i=1 XR

i

Finally, we can prove that SOL

OPT
≤ 1 + 4

P
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PTAS in Proper Interval Graphs
Conclusion:

Theorem

For any P, the previous algorithm outputs a (1 + 4
P
)-approximation for the

k-Sparsest Subgraph in Proper Interval graphs in O(nO(P))
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Open problems and Future Work

Complexity of k-Sparsest Subgraph:
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Open problems and Future Work

Complexity of k-Sparsest Subgraph:

2 main objectives:

extend FPT and/or approximation results to Chordal graphs

NP-hardness for Chordal graphs
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Thank you for your attention!
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