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t-track graphs

When all intervals are of the same length: “Unit” t-track graph

Subclass of t-interval graphs.
Same as the class of graphs that are the edge union of t interval
graphs.
“Boxicity” ≤ t graph: Edge intersection of t interval graphs.
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The MAXIMUM CLIQUE problem

MAXIMUM CLIQUE: Given G, k , decide if G has a clique of size ≥ k .

General graphs: NP-complete [Karp ’72].
General graphs: cannot be approximated to within a factor of
O(n1−ε) unless P=NP [Zuckerman ’06].
Interval graphs: Polynomial-time solvable.
Boxicity ≤ k graphs: Polynomial-time solvable for any fixed k .
3-interval graphs: NP-complete [Butman et al. ’07] (therefore,
also for t-interval graphs, t ≥ 3).

t-interval graphs: t2−t+1
2 -approximation algorithm [Butman et al.

’07].

t-track graphs: t2−t
2 -approximation algorithm [Koenig ’09].

Therefore, polynomial-time solvable on 2-track graphs.
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Our results

Butman et al. ask the following questions:
1 Is MAXIMUM CLIQUE NP-hard for 2-interval graphs?

X

2 Is it APX-hard in t-interval graphs for any constant t ≥ 2?

X

3 Can the approximation ratio be improved?

Already improved to
4t [Kammer et al. ’10] X

We show:
1 MAXIMUM CLIQUE is APX-complete for 2-interval graphs,

3-track graphs, unit 3-interval graphs and unit 4-track graphs.
2 MAXIMUM CLIQUE is NP-complete for unit 2-interval graphs

and unit 3-track graphs.
3 There is a t-approximation algorithm for MAXIMUM CLIQUE on

t-interval graphs.

The Maximum Clique Problem in Multiple Interval Graphs



Our results

Butman et al. ask the following questions:
1 Is MAXIMUM CLIQUE NP-hard for 2-interval graphs? X
2 Is it APX-hard in t-interval graphs for any constant t ≥ 2? X
3 Can the approximation ratio be improved? Already improved to

4t [Kammer et al. ’10] X

We show:
1 MAXIMUM CLIQUE is APX-complete for 2-interval graphs,

3-track graphs, unit 3-interval graphs and unit 4-track graphs.
2 MAXIMUM CLIQUE is NP-complete for unit 2-interval graphs

and unit 3-track graphs.
3 There is a t-approximation algorithm for MAXIMUM CLIQUE on

t-interval graphs.

The Maximum Clique Problem in Multiple Interval Graphs



Our results

Butman et al. ask the following questions:
1 Is MAXIMUM CLIQUE NP-hard for 2-interval graphs? X
2 Is it APX-hard in t-interval graphs for any constant t ≥ 2? X
3 Can the approximation ratio be improved? Already improved to

4t [Kammer et al. ’10] X
We show:

1 MAXIMUM CLIQUE is APX-complete for 2-interval graphs,
3-track graphs, unit 3-interval graphs and unit 4-track graphs.

2 MAXIMUM CLIQUE is NP-complete for unit 2-interval graphs
and unit 3-track graphs.

3 There is a t-approximation algorithm for MAXIMUM CLIQUE on
t-interval graphs.

The Maximum Clique Problem in Multiple Interval Graphs



Our results

Interval

Unit interval

The Maximum Clique Problem in Multiple Interval Graphs



Our results

Interval

Unit interval

2-interval

3-interval

4-interval

The Maximum Clique Problem in Multiple Interval Graphs



Our results

Interval

Unit interval

2-interval

3-interval

4-interval

Unit 2-interval

Unit 3-interval

Unit 4-interval

The Maximum Clique Problem in Multiple Interval Graphs



Our results

Interval

Unit interval

Unit 2-track

2-track

2-interval

3-track

3-interval

4-track

4-interval

Unit 2-interval

Unit 3-track

Unit 3-interval

Unit 4-track

Unit 4-interval

The Maximum Clique Problem in Multiple Interval Graphs



Our results

Interval

Unit interval

Unit 2-track

2-track

2-interval

3-track

3-interval

4-track

4-interval

Unit 2-interval

Unit 3-track

Unit 3-interval

Unit 4-track

Unit 4-interval

The Maximum Clique Problem in Multiple Interval Graphs



Our results

Interval

Unit interval

Unit 2-track

2-track

2-interval

3-track

3-interval

4-track

4-interval

Unit 2-interval

Unit 3-track

Unit 3-interval

Unit 4-track

Unit 4-interval

The Maximum Clique Problem in Multiple Interval Graphs



Our results

Interval

Unit interval

Unit 2-track

2-track

2-interval

3-track

3-interval

4-track

4-interval

Unit 2-interval

Unit 3-track

Unit 3-interval

Unit 4-track

Unit 4-interval

The Maximum Clique Problem in Multiple Interval Graphs



Our results

Interval

Unit interval

Unit 2-track

2-track

2-interval

3-track

3-interval

4-track

4-interval

Unit 2-interval

Unit 3-track

Unit 3-interval

Unit 4-track

Unit 4-interval

The Maximum Clique Problem in Multiple Interval Graphs



The reduction from MAXIMUM INDEPENDENT SET

MAXIMUM INDEPENDENT SET: Given G, k , decide if G has an
independent set of size ≥ k .

The “even subdivision” of a graph:

Given a graph G, construct G′ by even subdivision of edges.

Each edge e is subdivided s(e) times.

α(G′) ≥ α(G) +
∑

e∈E(G)

s(e)

2

α(G′) ≤ α(G) +
∑

e∈E(G)

s(e)

2

α(G′) = α(G) +
∑

e∈E(G)

s(e)

2

An M.I.S. in G′
poly.time−−−−−→ an M.I.S. in G.
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X - class of graphs in which MAXIMUM INDEPENDENT SET is
NP-hard.
C - another class of graphs.

Suppose for every graph G ∈ X , we can compute in polynomial time
an even subdivision G′ such that G′ ∈ C.
Then,

polynomial-time algorithm for M.I.S. in C
⇓

polynomial-time algorithm for M.I.S. in X .

Therefore, MAXIMUM INDEPENDENT SET is NP-hard in C as well.
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k -subdivision of a graph: s(e) = k for every edge e ∈ E(G).

We show: The 4-subdivision of any graph is a co-2-interval graph.

Let G be any graph and G′ its
4-subdivision.
V (G′) is partitioned into sets
X ,A,B,C,D.
X - set of original vertices of G.
Remaining vertices are called
“new” vertices.
Every path of length 5 between
two vertices of X is given an ar-
bitrary direction.
A new vertex is in A, B, C or D
according as whether it occurs
first, second, third or fourth in
its path.
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MAXIMUM INDEPENDENT SET is NP-hard in complements of
2-interval graphs.
MAXIMUM CLIQUE is NP-hard in 2-interval graphs.
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Approximation hardness

Theorem (Chlebı́k and Chlebı́kova)

For any fixed even k, the MAXIMUM INDEPENDENT SET problem is
APX-hard in k-subdivisions of 3-regular graphs.
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Approximation hardness

Theorem (Chlebı́k and Chlebı́kova)

For any fixed even k, the MAXIMUM INDEPENDENT SET problem is
APX-hard in k-subdivisions of 3-regular graphs.

Proof:

Let G be the graph and G′ its k -subdivision.

Suppose there exists a PTAS for MAXIMUM INDEPENDENT SET in
k -subdivisions of 3-regular graphs.
For every ε > 0, A(ε) : (1 + ε)-approximation algorithm for finding the
M.I.S. in k -subdivisions of 3-regular graphs.

Algorithm B(ε):
Input: G
Constructs G′ and runs A(ε) on G. Let I be the output of A(ε).
Output: I ∩ V (G)

Output of B(ε) is an independent set of G.
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Approximation hardness

Theorem (Chlebı́k and Chlebı́kova)

For any fixed even k, the MAXIMUM INDEPENDENT SET problem is
APX-hard in k-subdivisions of 3-regular graphs.

Proof:

I′: Output of A(ε)
I: Output of B(ε)
α′ - size of a M.I.S. in G′

α - size of a M.I.S. in G

|I′| ≥ α′

1+ε
|I| ≥ |I′| −m · k

2

As G is 3-regular, α ≥ n
4

|I| ≥ α′

(1 + ε)
−m · k

2
=
α + m · k

2
(1 + ε)

−m · k
2

=
α− εm · k

2
(1 + ε)

=
α− ε · 3n

2 ·
k
2

(1 + ε)
=
α− 3εk · n

4
(1 + ε)

≥ α− 3εkα
(1 + ε)

= α

[
1− 3εk

1 + ε

]
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Approximation hardness

Theorem (Chlebı́k and Chlebı́kova)

For any fixed even k, the MAXIMUM INDEPENDENT SET problem is
APX-hard in k-subdivisions of 3-regular graphs.

Proof:

Thus, for every ε > 0, B(ε) is a
(

1+ε
1−3εk

)
-approximation algorithm for

MAXIMUM INDEPENDENT SET in 3-regular graphs.

But there can be no PTAS for MAXIMUM INDEPENDENT SET in
3-regular graphs unless P=NP, i.e., the problem is APX-hard [Alimonti
and Kann ’00].

Therefore, MAXIMUM INDEPENDENT SET in k -subdivisions of
3-regular graphs is also APX-hard.
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Approximation hardness

Theorem (Chlebı́k and Chlebı́kova)

For any fixed even k, the MAXIMUM INDEPENDENT SET problem is
APX-hard in k-subdivisions of 3-regular graphs.

We have shown that given any graph, its 4-subdivision is the comple-
ment of a 2-interval graph, or a co-2-interval graph.

Therefore,

Theorem
MAXIMUM CLIQUE is APX-hard in 2-interval graphs.
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Approximation hardness

Theorem (Chlebı́k and Chlebı́kova)

For any fixed even k, the MAXIMUM INDEPENDENT SET problem is
APX-hard in k-subdivisions of 3-regular graphs.

Theorem
MAXIMUM CLIQUE is APX-hard in 2-interval graphs.

Similar constructions show that:
The 2-subdivision of any graph is co-3-track
The 2-subdivision of any graph is co-unit-3-interval
The 2-subdivision of any graph is co-unit-4-track
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Approximation hardness

Theorem (Chlebı́k and Chlebı́kova)

For any fixed even k, the MAXIMUM INDEPENDENT SET problem is
APX-hard in k-subdivisions of 3-regular graphs.

Theorem
MAXIMUM CLIQUE is APX-hard in 2-interval graphs.

Theorem
MAXIMUM CLIQUE is APX-hard in 3-track graphs.

Theorem
MAXIMUM CLIQUE is APX-hard in unit-3-interval graphs.

Theorem
MAXIMUM CLIQUE is APX-hard in unit-4-track graphs.

The Maximum Clique Problem in Multiple Interval Graphs



Unit 2-interval and unit 3-track graphs

Reduction from MAXIMUM INDEPENDENT SET for planar degree
bounded graphs.
MAXIMUM INDEPENDENT SET remains NP-hard for planar graphs
with degree at most 4.
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Unit 2-interval and unit 3-track graphs

Reduction from MAXIMUM INDEPENDENT SET for planar degree
bounded graphs.
MAXIMUM INDEPENDENT SET remains NP-hard for planar graphs
with degree at most 4.

Every planar graph with ∆ ≤ 4 can
be “embedded” on a linear-sized
rectangular grid [Valiant].
Vertices mapped to points with in-
teger coordinates.
Edges are piecewise linear curves
made up of horizontal and vertical
segments whose end-points have
integer coordinates.
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Unit 2-interval and unit 3-track graphs

Reduction from MAXIMUM INDEPENDENT SET for planar degree
bounded graphs.
MAXIMUM INDEPENDENT SET remains NP-hard for planar graphs
with degree at most 4.

Given a planar graph G, take an
embedding of it on such a grid.

Insert vertices at all integer points.
We get a subdivision G′ of G.
Not necessarily an even subdivi-
sion.
G′ is an induced subgraph of the
rectangular grid graph.
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The weird grid
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For any graph G, there is an even subdivision of it that is an induced
subgraph of the weird grid.

We show:

The complement of the weird grid is both a unit 2-interval graph and a
unit 3-track graph.

Therefore:

Theorem
MAXIMUM CLIQUE is NP-hard on unit 2-interval graphs.

Theorem
MAXIMUM CLIQUE is NP-hard on unit 3-track graphs.
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Approximation algorithm

i-th interval of u

j-th interval of v
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Some more results

MAXIMUM CLIQUE on circular analogues of t-interval and t-track
graphs.

The complement of the 2-subdivision of any graph is both a circular
2-interval graph and a circular 2-track graph.

Theorem
MAXIMUM CLIQUE is APX-hard in circular 2-interval graphs.

Theorem
MAXIMUM CLIQUE is APX-hard in circular 2-track graphs.

Corollary

MAXIMUM CLIQUE is NP-complete on unit circular 2-interval graphs.

The Maximum Clique Problem in Multiple Interval Graphs



Some more results

MAXIMUM CLIQUE on circular analogues of t-interval and t-track
graphs.

The complement of the 2-subdivision of any graph is both a circular
2-interval graph and a circular 2-track graph.

Theorem
MAXIMUM CLIQUE is APX-hard in circular 2-interval graphs.

Theorem
MAXIMUM CLIQUE is APX-hard in circular 2-track graphs.

Corollary

MAXIMUM CLIQUE is NP-complete on unit circular 2-interval graphs.

The Maximum Clique Problem in Multiple Interval Graphs



Some more results

MAXIMUM CLIQUE on circular analogues of t-interval and t-track
graphs.

The complement of the 2-subdivision of any graph is both a circular
2-interval graph and a circular 2-track graph.

Theorem
MAXIMUM CLIQUE is APX-hard in circular 2-interval graphs.

Theorem
MAXIMUM CLIQUE is APX-hard in circular 2-track graphs.

Corollary

MAXIMUM CLIQUE is NP-complete on unit circular 2-interval graphs.

The Maximum Clique Problem in Multiple Interval Graphs



Open problems

Is there a PTAS for MAXIMUM CLIQUE in unit 2-interval graphs
and unit 3-track graphs or are the problems APX-hard?
Can the approximation ratio of t for MAXIMUM CLIQUE in
t-interval graphs be improved? Not better than O(t1−ε).
Is MAXIMUM CLIQUE NP-complete for unit circular 2-track
graphs?
What approximation ratio can be obtained if a representation of
the graph is not known?
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