The Maximum Clique Problem in Multiple Interval Graphs

Interval graphs

Interval graphs

When all intervals are of the same length: "Unit" interval graph

Interval graphs

When all intervals are of the same length: "Unit" interval graph

t-interval graphs

t-interval graphs

When all intervals are of the same length: "Unit" t-interval graph

t-track graphs

t-track graphs

When all intervals are of the same length: "Unit" t-track graph

t-track graphs

When all intervals are of the same length: "Unit" t-track graph

- Subclass of t-interval graphs.

t-track graphs

When all intervals are of the same length: "Unit" t-track graph

- Subclass of t-interval graphs.
- Same as the class of graphs that are the edge union of t interval graphs.

t-track graphs

When all intervals are of the same length: "Unit" t-track graph

- Subclass of t-interval graphs.
- Same as the class of graphs that are the edge union of t interval graphs.
- "Boxicity" $\leq t$ graph: Edge intersection of t interval graphs.

MAXIMUM CLIQUE: Given G, k, decide if G has a clique of size $\geq k$.

The MAXIMUM CLIQUE problem

MAXIMUM CLIQUE: Given G, k, decide if G has a clique of size $\geq k$.

- General graphs: NP-complete [Karp '72].

The MAXIMUM CLIQUE problem

MAXIMUM CLIQUE: Given G, k, decide if G has a clique of size $\geq k$.

- General graphs: NP-complete [Karp '72].
- General graphs: cannot be approximated to within a factor of $O\left(n^{1-\epsilon}\right)$ unless $\mathrm{P}=\mathrm{NP}$ [Zuckerman '06].

The MAXIMUM CLIQUE problem

MAXIMUM CLIQUE: Given G, k, decide if G has a clique of size $\geq k$.

- General graphs: NP-complete [Karp '72].
- General graphs: cannot be approximated to within a factor of $O\left(n^{1-\epsilon}\right)$ unless $\mathrm{P}=\mathrm{NP}$ [Zuckerman '06].
- Interval graphs: Polynomial-time solvable.

The MAXIMUM CLIQUE problem

MAXIMUM CLIQUE: Given G, k, decide if G has a clique of size $\geq k$.

- General graphs: NP-complete [Karp '72].
- General graphs: cannot be approximated to within a factor of $O\left(n^{1-\epsilon}\right)$ unless $\mathrm{P}=\mathrm{NP}$ [Zuckerman '06].
- Interval graphs: Polynomial-time solvable.
- Boxicity $\leq k$ graphs: Polynomial-time solvable for any fixed k.

The MAXIMUM CLIQUE problem

MAXIMUM CLIQUE: Given G, k, decide if G has a clique of size $\geq k$.

- General graphs: NP-complete [Karp '72].
- General graphs: cannot be approximated to within a factor of $O\left(n^{1-\epsilon}\right)$ unless P=NP [Zuckerman '06].
- Interval graphs: Polynomial-time solvable.
- Boxicity $\leq k$ graphs: Polynomial-time solvable for any fixed k.
- 3-interval graphs: NP-complete [Butman et al. '07] (therefore, also for t-interval graphs, $t \geq 3$).

The MAXIMUM CLIQUE problem

MAXIMUM CLIQUE: Given G, k, decide if G has a clique of size $\geq k$.

- General graphs: NP-complete [Karp '72].
- General graphs: cannot be approximated to within a factor of $O\left(n^{1-\epsilon}\right)$ unless P=NP [Zuckerman '06].
- Interval graphs: Polynomial-time solvable.
- Boxicity $\leq k$ graphs: Polynomial-time solvable for any fixed k.
- 3-interval graphs: NP-complete [Butman et al. '07] (therefore, also for t-interval graphs, $t \geq 3$).
- t-interval graphs: $\frac{t^{2}-t+1}{2}$-approximation algorithm [Butman et al. '07].

The MAXIMUM CLIQUE problem

MAXIMUM CLIQUE: Given G, k, decide if G has a clique of size $\geq k$.

- General graphs: NP-complete [Karp '72].
- General graphs: cannot be approximated to within a factor of $O\left(n^{1-\epsilon}\right)$ unless P=NP [Zuckerman '06].
- Interval graphs: Polynomial-time solvable.
- Boxicity $\leq k$ graphs: Polynomial-time solvable for any fixed k.
- 3-interval graphs: NP-complete [Butman et al. '07] (therefore, also for t-interval graphs, $t \geq 3$).
- t-interval graphs: $\frac{t^{2}-t+1}{2}$-approximation algorithm [Butman et al. '07].
- t-track graphs: $\frac{t^{2}-t}{2}$-approximation algorithm [Koenig '09]. Therefore, polynomial-time solvable on 2-track graphs.

Butman et al. ask the following questions:
(1) Is MAXIMUM CLIQUE NP-hard for 2-interval graphs?
(2) Is it APX-hard in t-interval graphs for any constant $t \geq 2$?
(3) Can the approximation ratio be improved?

Butman et al. ask the following questions:
(1) Is MAXIMUM CLIQUE NP-hard for 2-interval graphs? \checkmark
(2) Is it APX-hard in t-interval graphs for any constant $t \geq 2$? \checkmark
(3) Can the approximation ratio be improved? Already improved to $4 t$ [Kammer et al. '10] \checkmark

Butman et al. ask the following questions:
(1) Is MAXIMUM CLIQUE NP-hard for 2-interval graphs? \checkmark
(2) Is it APX-hard in t-interval graphs for any constant $t \geq 2$?
(3) Can the approximation ratio be improved? Already improved to $4 t$ [Kammer et al. '10] \checkmark
We show:
(1) MAXIMUM CLIQUE is APX-complete for 2-interval graphs, 3-track graphs, unit 3-interval graphs and unit 4-track graphs.
(2) MAXIMUM CLIQUE is NP-complete for unit 2-interval graphs and unit 3-track graphs.
(3) There is a t-approximation algorithm for MAXIMUM CLIQUE on t-interval graphs.

Our results

Our results

The Maximum Clique Problem in Multiple Interval Graphs

Our results

The Maximum Clique Problem in Multiple Interval Graphs

Our results

The Maximum Clique Problem in Multiple Interval Graphs

Our results

Our results

Our results

Our results

The reduction from MAXIMUM INDEPENDENT SET

MAXIMUM INDEPENDENT SET: Given G, k, decide if G has an independent set of size $\geq k$.

The "even subdivision" of a graph:
Given a graph G, construct G^{\prime} by even subdivision of edges.

The reduction from MAXIMUM INDEPENDENT SET

MAXIMUM INDEPENDENT SET: Given G, k, decide if G has an independent set of size $\geq k$.

The "even subdivision" of a graph:
Given a graph G, construct G^{\prime} by even subdivision of edges.

The reduction from MAXIMUM INDEPENDENT SET

MAXIMUM INDEPENDENT SET: Given G, k, decide if G has an independent set of size $\geq k$.

The "even subdivision" of a graph:
Given a graph G, construct G^{\prime} by even subdivision of edges.
Each edge e is subdivided $s(e)$ times.

The reduction from MAXIMUM INDEPENDENT SET

MAXIMUM INDEPENDENT SET: Given G, k, decide if G has an independent set of size $\geq k$.

The "even subdivision" of a graph:
Given a graph G, construct G^{\prime} by even subdivision of edges.
Each edge e is subdivided $s(e)$ times.

$$
\alpha\left(G^{\prime}\right)=\alpha(G)+\sum_{e \in E(G)} \frac{s(e)}{2}
$$

The reduction from MAXIMUM INDEPENDENT SET

MAXIMUM INDEPENDENT SET: Given G, k, decide if G has an independent set of size $\geq k$.

The "even subdivision" of a graph:
Given a graph G, construct G^{\prime} by even subdivision of edges.
Each edge e is subdivided $s(e)$ times.

The reduction from MAXIMUM INDEPENDENT SET

MAXIMUM INDEPENDENT SET: Given G, k, decide if G has an independent set of size $\geq k$.

The "even subdivision" of a graph:
Given a graph G, construct G^{\prime} by even subdivision of edges.
Each edge e is subdivided $s(e)$ times.

The reduction from MAXIMUM INDEPENDENT SET

MAXIMUM INDEPENDENT SET: Given G, k, decide if G has an independent set of size $\geq k$.

The "even subdivision" of a graph:
Given a graph G, construct G^{\prime} by even subdivision of edges.
Each edge e is subdivided $s(e)$ times.

$$
\alpha\left(G^{\prime}\right) \geq \alpha(G)+\sum_{e \in E(G)} \frac{s(e)}{2}
$$

The reduction from MAXIMUM INDEPENDENT SET

MAXIMUM INDEPENDENT SET: Given G, k, decide if G has an independent set of size $\geq k$.

The "even subdivision" of a graph:
Given a graph G, construct G^{\prime} by even subdivision of edges.
Each edge e is subdivided $s(e)$ times.

$$
\alpha\left(G^{\prime}\right) \geq \alpha(G)+\sum_{e \in E(G)} \frac{s(e)}{2}
$$

The reduction from MAXIMUM INDEPENDENT SET

MAXIMUM INDEPENDENT SET: Given G, k, decide if G has an independent set of size $\geq k$.

The "even subdivision" of a graph:
Given a graph G, construct G^{\prime} by even subdivision of edges.
Each edge e is subdivided $s(e)$ times.

$$
\alpha\left(G^{\prime}\right) \geq \alpha(G)+\sum_{e \in E(G)} \frac{s(e)}{2}
$$

The reduction from MAXIMUM INDEPENDENT SET

MAXIMUM INDEPENDENT SET: Given G, k, decide if G has an independent set of size $\geq k$.

The "even subdivision" of a graph:
Given a graph G, construct G^{\prime} by even subdivision of edges.
Each edge e is subdivided $s(e)$ times.

$$
\alpha\left(G^{\prime}\right) \geq \alpha(G)+\sum_{e \in E(G)} \frac{s(e)}{2}
$$

The reduction from MAXIMUM INDEPENDENT SET

MAXIMUM INDEPENDENT SET: Given G, k, decide if G has an independent set of size $\geq k$.

The "even subdivision" of a graph:
Given a graph G, construct G^{\prime} by even subdivision of edges.
Each edge e is subdivided $s(e)$ times.

$$
\begin{aligned}
& \alpha\left(G^{\prime}\right) \geq \alpha(G)+\sum_{e \in E(G)} \frac{s(e)}{2} \\
& \alpha\left(G^{\prime}\right) \leq \alpha(G)+\sum_{e \in E(G)} \frac{s(e)}{2}
\end{aligned}
$$

The reduction from MAXIMUM INDEPENDENT SET

MAXIMUM INDEPENDENT SET: Given G, k, decide if G has an independent set of size $\geq k$.

The "even subdivision" of a graph:
Given a graph G, construct G^{\prime} by even subdivision of edges.
Each edge e is subdivided $s(e)$ times.

$$
\begin{aligned}
& \alpha\left(G^{\prime}\right) \geq \alpha(G)+\sum_{e \in E(G)} \frac{s(e)}{2} \\
& \alpha\left(G^{\prime}\right) \leq \alpha(G)+\sum_{e \in E(G)} \frac{s(e)}{2} \\
& \alpha\left(G^{\prime}\right)=\alpha(G)+\sum_{e \in E(G)} \frac{s(e)}{2}
\end{aligned}
$$

The reduction from MAXIMUM INDEPENDENT SET

MAXIMUM INDEPENDENT SET: Given G, k, decide if G has an independent set of size $\geq k$.

The "even subdivision" of a graph:
Given a graph G, construct G^{\prime} by even subdivision of edges.
Each edge e is subdivided $s(e)$ times.

$$
\begin{aligned}
& \alpha\left(G^{\prime}\right) \geq \alpha(G)+\sum_{e \in E(G)} \frac{s(e)}{2} \\
& \alpha\left(G^{\prime}\right) \leq \alpha(G)+\sum_{e \in E(G)} \frac{s(e)}{2} \\
& \alpha\left(G^{\prime}\right)=\alpha(G)+\sum_{e \in E(G)} \frac{s(e)}{2}
\end{aligned}
$$

An M.I.S. in $G^{\prime} \xrightarrow{\text { poly.time }}$ an M.I.S. in G.
\mathcal{X} - class of graphs in which MAXIMUM INDEPENDENT SET is NP-hard.
\mathcal{C} - another class of graphs.
\mathcal{X} - class of graphs in which MAXIMUM INDEPENDENT SET is NP-hard.
\mathcal{C} - another class of graphs.
Suppose for every graph $G \in \mathcal{X}$, we can compute in polynomial time an even subdivision G^{\prime} such that $G^{\prime} \in \mathcal{C}$.
\mathcal{X} - class of graphs in which MAXIMUM INDEPENDENT SET is NP-hard.
\mathcal{C} - another class of graphs.
Suppose for every graph $G \in \mathcal{X}$, we can compute in polynomial time an even subdivision G^{\prime} such that $G^{\prime} \in \mathcal{C}$.
Then,
polynomial-time algorithm for M.I.S. in \mathcal{C}
\Downarrow
polynomial-time algorithm for M.I.S. in \mathcal{X}.
\mathcal{X} - class of graphs in which MAXIMUM INDEPENDENT SET is NP-hard.
\mathcal{C} - another class of graphs.
Suppose for every graph $G \in \mathcal{X}$, we can compute in polynomial time an even subdivision G^{\prime} such that $G^{\prime} \in \mathcal{C}$.
Then,
polynomial-time algorithm for M.I.S. in \mathcal{C}
\Downarrow
polynomial-time algorithm for M.I.S. in \mathcal{X}.
Therefore, MAXIMUM INDEPENDENT SET is NP-hard in \mathcal{C} as well.

k-subdivision of a graph: $s(e)=k$ for every edge $e \in E(G)$.

k-subdivision of a graph: $s(e)=k$ for every edge $e \in E(G)$. We show: The 4 -subdivision of any graph is a co-2-interval graph.
k-subdivision of a graph: $s(e)=k$ for every edge $e \in E(G)$. We show: The 4-subdivision of any graph is a co-2-interval graph. Let G be any graph and G^{\prime} its 4-subdivision.
k-subdivision of a graph: $s(e)=k$ for every edge $e \in E(G)$. We show: The 4 -subdivision of any graph is a co-2-interval graph. Let G be any graph and G^{\prime} its 4-subdivision.
k-subdivision of a graph: $s(e)=k$ for every edge $e \in E(G)$. We show: The 4-subdivision of any graph is a co-2-interval graph. Let G be any graph and G^{\prime} its 4-subdivision.
$V\left(G^{\prime}\right)$ is partitioned into sets X, A, B, C, D.
k-subdivision of a graph: $s(e)=k$ for every edge $e \in E(G)$.
We show: The 4-subdivision of any graph is a co-2-interval graph. Let G be any graph and G^{\prime} its 4-subdivision.
$V\left(G^{\prime}\right)$ is partitioned into sets X, A, B, C, D.
X - set of original vertices of G.
k-subdivision of a graph: $s(e)=k$ for every edge $e \in E(G)$.
We show: The 4-subdivision of any graph is a co-2-interval graph. Let G be any graph and G^{\prime} its 4-subdivision.
$V\left(G^{\prime}\right)$ is partitioned into sets X, A, B, C, D.
X - set of original vertices of G. Remaining vertices are called "new" vertices.
k-subdivision of a graph: $s(e)=k$ for every edge $e \in E(G)$.
We show: The 4 -subdivision of any graph is a co-2-interval graph. Let G be any graph and G^{\prime} its 4-subdivision. $V\left(G^{\prime}\right)$ is partitioned into sets X, A, B, C, D.
X - set of original vertices of G. Remaining vertices are called "new" vertices.
Every path of length 5 between two vertices of X is given an arbitrary direction.
k-subdivision of a graph: $s(e)=k$ for every edge $e \in E(G)$.
We show: The 4-subdivision of any graph is a co-2-interval graph. Let G be any graph and G^{\prime} its 4-subdivision.
$V\left(G^{\prime}\right)$ is partitioned into sets X, A, B, C, D.
X - set of original vertices of G. Remaining vertices are called "new" vertices.
Every path of length 5 between two vertices of X is given an arbitrary direction.
A new vertex is in A, B, C or D according as whether it occurs first, second, third or fourth in its path.

The Maximum Clique Problem in Multiple Interval Graphs

The Maximum Clique Problem in Multiple Interval Graphs

The Maximum Clique Problem in Multiple Interval Graphs

The Maximum Clique Problem in Multiple Interval Graphs

The Maximum Clique Problem in Multiple Interval Graphs

Given any graph G, its 4 -subdivision G^{\prime} is the complement a 2-interval graph.

Given any graph G, its 4 -subdivision G^{\prime} is the complement a 2-interval graph. MAXIMUM INDEPENDENT SET is NP-hard in complements of 2-interval graphs.

Given any graph G, its 4 -subdivision G^{\prime} is the complement a 2-interval graph. MAXIMUM INDEPENDENT SET is NP-hard in complements of 2-interval graphs.
MAXIMUM CLIQUE is NP-hard in 2-interval graphs.

Approximation hardness

Theorem (Chlebík and Chlebíkova)
For any fixed even k, the MAXIMUM INDEPENDENT SET problem is APX-hard in k-subdivisions of 3 -regular graphs.

Approximation hardness

Theorem (Chlebík and Chlebíkova)
For any fixed even k, the MAXIMUM INDEPENDENT SET problem is APX-hard in k-subdivisions of 3 -regular graphs.

Proof:

Let G be the graph and G^{\prime} its k-subdivision.

Approximation hardness

Theorem (Chlebík and Chlebíkova)

For any fixed even k, the MAXIMUM INDEPENDENT SET problem is APX-hard in k-subdivisions of 3 -regular graphs.

Proof:
Let G be the graph and G^{\prime} its k-subdivision. Suppose there exists a PTAS for MAXIMUM INDEPENDENT SET in k-subdivisions of 3 -regular graphs.

Approximation hardness

Theorem (Chlebík and Chlebíkova)

For any fixed even k, the MAXIMUM INDEPENDENT SET problem is APX-hard in k-subdivisions of 3 -regular graphs.

Proof:
Let G be the graph and G^{\prime} its k-subdivision. Suppose there exists a PTAS for MAXIMUM INDEPENDENT SET in k-subdivisions of 3-regular graphs.
For every $\epsilon>0, \mathcal{A}(\epsilon):(1+\epsilon)$-approximation algorithm for finding the M.I.S. in k-subdivisions of 3 -regular graphs.

Approximation hardness

Theorem (Chlebík and Chlebíkova)

For any fixed even k, the MAXIMUM INDEPENDENT SET problem is APX-hard in k-subdivisions of 3 -regular graphs.

Proof:

Let G be the graph and G^{\prime} its k-subdivision. Suppose there exists a PTAS for MAXIMUM INDEPENDENT SET in k-subdivisions of 3 -regular graphs.
For every $\epsilon>0, \mathcal{A}(\epsilon):(1+\epsilon)$-approximation algorithm for finding the M.I.S. in k-subdivisions of 3 -regular graphs.

Algorithm $\mathcal{B}(\epsilon)$:
Input: G
Constructs G^{\prime} and runs $\mathcal{A}(\epsilon)$ on G. Let $/$ be the output of $\mathcal{A}(\epsilon)$. Output: $I \cap V(G)$

Approximation hardness

Theorem (Chlebík and Chlebíkova)

For any fixed even k, the MAXIMUM INDEPENDENT SET problem is APX-hard in k-subdivisions of 3 -regular graphs.

Proof:

Let G be the graph and G^{\prime} its k-subdivision. Suppose there exists a PTAS for MAXIMUM INDEPENDENT SET in k-subdivisions of 3-regular graphs.
For every $\epsilon>0, \mathcal{A}(\epsilon):(1+\epsilon)$-approximation algorithm for finding the M.I.S. in k-subdivisions of 3 -regular graphs.

```
Algorithm \(\mathcal{B}(\epsilon)\) :
Input: G
Constructs \(G^{\prime}\) and runs \(\mathcal{A}(\epsilon)\) on \(G\). Let \(/\) be the output of \(\mathcal{A}(\epsilon)\).
Output: \(I \cap V(G)\)
```

Output of $\mathcal{B}(\epsilon)$ is an independent set of G.

Approximation hardness

Theorem (Chlebík and Chlebíkova)

For any fixed even k, the MAXIMUM INDEPENDENT SET problem is APX-hard in k-subdivisions of 3 -regular graphs.

Proof:
I^{\prime} : Output of $\mathcal{A}(\epsilon)$
I: Output of $\mathcal{B}(\epsilon)$
α^{\prime} - size of a M.I.S. in G^{\prime}
α - size of a M.I.S. in G

Approximation hardness

Theorem (Chlebík and Chlebíkova)

For any fixed even k, the MAXIMUM INDEPENDENT SET problem is APX-hard in k-subdivisions of 3 -regular graphs.

Proof:
I^{\prime} : Output of $\mathcal{A}(\epsilon)$
I: Output of $\mathcal{B}(\epsilon)$
α^{\prime} - size of a M.I.S. in G^{\prime}
$\alpha-$ size of a M.I.S. in G
$\left|I^{\prime}\right| \geq \frac{\alpha^{\prime}}{1+\epsilon} \quad|I| \geq\left|I^{\prime}\right|-m \cdot \frac{k}{2}$

Approximation hardness

Theorem (Chlebík and Chlebíkova)

For any fixed even k, the MAXIMUM INDEPENDENT SET problem is APX-hard in k-subdivisions of 3 -regular graphs.

Proof:
I^{\prime} : Output of $\mathcal{A}(\epsilon)$
I: Output of $\mathcal{B}(\epsilon)$
α^{\prime} - size of a M.I.S. in G^{\prime}
$\alpha-$ size of a M.I.S. in G
$\left|I^{\prime}\right| \geq \frac{\alpha^{\prime}}{1+\epsilon} \quad|I| \geq\left|I^{\prime}\right|-m \cdot \frac{k}{2}$

$$
|I| \geq \frac{\alpha^{\prime}}{(1+\epsilon)}-m \cdot \frac{k}{2}
$$

Approximation hardness

Theorem (Chlebík and Chlebíkova)

For any fixed even k, the MAXIMUM INDEPENDENT SET problem is APX-hard in k-subdivisions of 3 -regular graphs.

Proof:
I^{\prime} : Output of $\mathcal{A}(\epsilon)$
I: Output of $\mathcal{B}(\epsilon)$
α^{\prime} - size of a M.I.S. in G^{\prime}
α - size of a M.I.S. in G
$\left|I^{\prime}\right| \geq \frac{\alpha^{\prime}}{1+\epsilon} \quad|I| \geq\left|I^{\prime}\right|-m \cdot \frac{k}{2}$

$$
|I| \geq \frac{\alpha^{\prime}}{(1+\epsilon)}-m \cdot \frac{k}{2}=\frac{\alpha+m \cdot \frac{k}{2}}{(1+\epsilon)}-m \cdot \frac{k}{2}
$$

Approximation hardness

Theorem (Chlebík and Chlebíkova)

For any fixed even k, the MAXIMUM INDEPENDENT SET problem is APX-hard in k-subdivisions of 3 -regular graphs.

Proof:
I^{\prime} : Output of $\mathcal{A}(\epsilon)$
I: Output of $\mathcal{B}(\epsilon)$
α^{\prime} - size of a M.I.S. in G^{\prime}
α - size of a M.I.S. in G
$\left|I^{\prime}\right| \geq \frac{\alpha^{\prime}}{1+\epsilon} \quad|I| \geq\left|I^{\prime}\right|-m \cdot \frac{k}{2}$

$$
|I| \geq \frac{\alpha^{\prime}}{(1+\epsilon)}-m \cdot \frac{k}{2}=\frac{\alpha+m \cdot \frac{k}{2}}{(1+\epsilon)}-m \cdot \frac{k}{2}=\frac{\alpha-\epsilon m \cdot \frac{k}{2}}{(1+\epsilon)}
$$

Approximation hardness

Theorem (Chlebík and Chlebíkova)

For any fixed even k, the MAXIMUM INDEPENDENT SET problem is APX-hard in k-subdivisions of 3 -regular graphs.

Proof:
I^{\prime} : Output of $\mathcal{A}(\epsilon)$
I: Output of $\mathcal{B}(\epsilon)$
α^{\prime} - size of a M.I.S. in G^{\prime}
α - size of a M.I.S. in G
$\left|I^{\prime}\right| \geq \frac{\alpha^{\prime}}{1+\epsilon} \quad|I| \geq\left|I^{\prime}\right|-m \cdot \frac{k}{2}$

$$
\begin{aligned}
|I| & \geq \frac{\alpha^{\prime}}{(1+\epsilon)}-m \cdot \frac{k}{2}=\frac{\alpha+m \cdot \frac{k}{2}}{(1+\epsilon)}-m \cdot \frac{k}{2}=\frac{\alpha-\epsilon m \cdot \frac{k}{2}}{(1+\epsilon)} \\
& =\frac{\alpha-\epsilon \cdot \frac{3 n}{2} \cdot \frac{k}{2}}{(1+\epsilon)}
\end{aligned}
$$

Approximation hardness

Theorem (Chlebík and Chlebíkova)

For any fixed even k, the MAXIMUM INDEPENDENT SET problem is APX-hard in k-subdivisions of 3 -regular graphs.

Proof:
I^{\prime} : Output of $\mathcal{A}(\epsilon)$
I: Output of $\mathcal{B}(\epsilon)$
α^{\prime} - size of a M.I.S. in G^{\prime}
α - size of a M.I.S. in G
$\left|I^{\prime}\right| \geq \frac{\alpha^{\prime}}{1+\epsilon} \quad|I| \geq\left|I^{\prime}\right|-m \cdot \frac{k}{2}$

$$
\begin{aligned}
|I| & \geq \frac{\alpha^{\prime}}{(1+\epsilon)}-m \cdot \frac{k}{2}=\frac{\alpha+m \cdot \frac{k}{2}}{(1+\epsilon)}-m \cdot \frac{k}{2}=\frac{\alpha-\epsilon m \cdot \frac{k}{2}}{(1+\epsilon)} \\
& =\frac{\alpha-\epsilon \cdot \frac{3 n}{2} \cdot \frac{k}{2}}{(1+\epsilon)}=\frac{\alpha-3 \epsilon k \cdot \frac{n}{4}}{(1+\epsilon)}
\end{aligned}
$$

Approximation hardness

Theorem (Chlebík and Chlebíkova)

For any fixed even k, the MAXIMUM INDEPENDENT SET problem is APX-hard in k-subdivisions of 3 -regular graphs.

Proof:
I^{\prime} : Output of $\mathcal{A}(\epsilon)$
I: Output of $\mathcal{B}(\epsilon)$
α^{\prime} - size of a M.I.S. in G^{\prime}
α - size of a M.I.S. in G
$\left|I^{\prime}\right| \geq \frac{\alpha^{\prime}}{1+\epsilon} \quad|I| \geq\left|I^{\prime}\right|-m \cdot \frac{k}{2}$
As G is 3-regular, $\alpha \geq \frac{n}{4}$

$$
\begin{aligned}
|I| & \geq \frac{\alpha^{\prime}}{(1+\epsilon)}-m \cdot \frac{k}{2}=\frac{\alpha+m \cdot \frac{k}{2}}{(1+\epsilon)}-m \cdot \frac{k}{2}=\frac{\alpha-\epsilon m \cdot \frac{k}{2}}{(1+\epsilon)} \\
& =\frac{\alpha-\epsilon \cdot \frac{3 n}{2} \cdot \frac{k}{2}}{(1+\epsilon)}=\frac{\alpha-3 \epsilon k \cdot \frac{n}{4}}{(1+\epsilon)} \\
& \geq \frac{\alpha-3 \epsilon k \alpha}{(1+\epsilon)}
\end{aligned}
$$

Approximation hardness

Theorem (Chlebík and Chlebíkova)

For any fixed even k, the MAXIMUM INDEPENDENT SET problem is APX-hard in k-subdivisions of 3 -regular graphs.

Proof:
I^{\prime} : Output of $\mathcal{A}(\epsilon)$
l: Output of $\mathcal{B}(\epsilon)$
α^{\prime} - size of a M.I.S. in G^{\prime}
α - size of a M.I.S. in G
$\left|I^{\prime}\right| \geq \frac{\alpha^{\prime}}{1+\epsilon} \quad|I| \geq\left|I^{\prime}\right|-m \cdot \frac{k}{2}$

$$
\begin{aligned}
|I| & \geq \frac{\alpha^{\prime}}{(1+\epsilon)}-m \cdot \frac{k}{2}=\frac{\alpha+m \cdot \frac{k}{2}}{(1+\epsilon)}-m \cdot \frac{k}{2}=\frac{\alpha-\epsilon m \cdot \frac{k}{2}}{(1+\epsilon)} \\
& =\frac{\alpha-\epsilon \cdot \frac{3 n}{2} \cdot \frac{k}{2}}{(1+\epsilon)}=\frac{\alpha-3 \epsilon k \cdot \frac{n}{4}}{(1+\epsilon)} \\
& \geq \frac{\alpha-3 \epsilon k \alpha}{(1+\epsilon)}=\alpha\left[\frac{1-3 \epsilon k}{1+\epsilon}\right]
\end{aligned}
$$

Approximation hardness

Theorem (Chlebík and Chlebíkova)

For any fixed even k, the MAXIMUM INDEPENDENT SET problem is APX-hard in k-subdivisions of 3 -regular graphs.

Proof:
Thus, for every $\epsilon>0, \mathcal{B}(\epsilon)$ is a $\left(\frac{1+\epsilon}{1-3 \epsilon k}\right)$-approximation algorithm for MAXIMUM INDEPENDENT SET in 3-regular graphs.
But there can be no PTAS for MAXIMUM INDEPENDENT SET in 3-regular graphs unless $P=$ NP, i.e., the problem is APX-hard [Alimonti and Kann '00].

Therefore, MAXIMUM INDEPENDENT SET in k-subdivisions of 3 -regular graphs is also APX-hard.

Approximation hardness

Theorem (Chlebík and Chlebíkova)

For any fixed even k, the MAXIMUM INDEPENDENT SET problem is APX-hard in k-subdivisions of 3 -regular graphs.

We have shown that given any graph, its 4 -subdivision is the complement of a 2-interval graph, or a co-2-interval graph.

Approximation hardness

Theorem (Chlebík and Chlebíkova)

For any fixed even k, the MAXIMUM INDEPENDENT SET problem is APX-hard in k-subdivisions of 3 -regular graphs.

We have shown that given any graph, its 4 -subdivision is the complement of a 2-interval graph, or a co-2-interval graph. Therefore,

Theorem

MAXIMUM CLIQUE is APX-hard in 2-interval graphs.

Approximation hardness

Theorem (Chlebík and Chlebíkova)

For any fixed even k, the MAXIMUM INDEPENDENT SET problem is APX-hard in k-subdivisions of 3 -regular graphs.

Theorem

MAXIMUM CLIQUE is APX-hard in 2-interval graphs.
Similar constructions show that:

- The 2-subdivision of any graph is co-3-track
- The 2-subdivision of any graph is co-unit-3-interval
- The 2-subdivision of any graph is co-unit-4-track

Approximation hardness

Theorem (Chlebík and Chlebíkova)

For any fixed even k, the MAXIMUM INDEPENDENT SET problem is APX-hard in k-subdivisions of 3 -regular graphs.

Theorem

MAXIMUM CLIQUE is APX-hard in 2-interval graphs.

Theorem

MAXIMUM CLIQUE is APX-hard in 3-track graphs.

Theorem

MAXIMUM CLIQUE is APX-hard in unit-3-interval graphs.

Theorem

MAXIMUM CLIQUE is APX-hard in unit-4-track graphs.

Unit 2-interval and unit 3-track graphs

Reduction from MAXIMUM INDEPENDENT SET for planar degree bounded graphs.
MAXIMUM INDEPENDENT SET remains NP-hard for planar graphs with degree at most 4.

Unit 2-interval and unit 3-track graphs

Reduction from MAXIMUM INDEPENDENT SET for planar degree bounded graphs. MAXIMUM INDEPENDENT SET remains NP-hard for planar graphs with degree at most 4.

Every planar graph with $\Delta \leq 4$ can
 be "embedded" on a linear-sized rectangular grid [Valiant].
Vertices mapped to points with integer coordinates.
Edges are piecewise linear curves made up of horizontal and vertical segments whose end-points have integer coordinates.

Unit 2-interval and unit 3-track graphs

Reduction from MAXIMUM INDEPENDENT SET for planar degree bounded graphs.
MAXIMUM INDEPENDENT SET remains NP-hard for planar graphs with degree at most 4.

Given a planar graph G, take an
 embedding of it on such a grid.

Unit 2-interval and unit 3-track graphs

Reduction from MAXIMUM INDEPENDENT SET for planar degree bounded graphs. MAXIMUM INDEPENDENT SET remains NP-hard for planar graphs with degree at most 4.

Given a planar graph G, take an
 embedding of it on such a grid. Insert vertices at all integer points.

Unit 2-interval and unit 3-track graphs

Reduction from MAXIMUM INDEPENDENT SET for planar degree bounded graphs. MAXIMUM INDEPENDENT SET remains NP-hard for planar graphs with degree at most 4.

Given a planar graph G, take an
 embedding of it on such a grid. Insert vertices at all integer points. We get a subdivision G^{\prime} of G.

Unit 2-interval and unit 3-track graphs

Reduction from MAXIMUM INDEPENDENT SET for planar degree bounded graphs. MAXIMUM INDEPENDENT SET remains NP-hard for planar graphs with degree at most 4.

Given a planar graph G, take an
 embedding of it on such a grid. Insert vertices at all integer points. We get a subdivision G^{\prime} of G.
Not necessarily an even subdivision.

Unit 2-interval and unit 3-track graphs

Reduction from MAXIMUM INDEPENDENT SET for planar degree bounded graphs. MAXIMUM INDEPENDENT SET remains NP-hard for planar graphs with degree at most 4.

Given a planar graph G, take an
 embedding of it on such a grid. Insert vertices at all integer points. We get a subdivision G^{\prime} of G.
Not necessarily an even subdivision.
G^{\prime} is an induced subgraph of the rectangular grid graph.

The weird grid

For any graph G, there is an even subdivision of it that is an induced subgraph of the weird grid.

For any graph G, there is an even subdivision of it that is an induced subgraph of the weird grid.
We show:
The complement of the weird grid is both a unit 2-interval graph and a unit 3-track graph.

For any graph G, there is an even subdivision of it that is an induced subgraph of the weird grid.
We show:
The complement of the weird grid is both a unit 2-interval graph and a unit 3-track graph.

Therefore:

Theorem

MAXIMUM CLIQUE is NP-hard on unit 2-interval graphs.

Theorem

MAXIMUM CLIQUE is NP-hard on unit 3-track graphs.

Approximation algorithm

Approximation algorithm

Approximation algorithm

Approximation algorithm

Approximation algorithm

Approximation algorithm

Approximation algorithm

Some more results

MAXIMUM CLIQUE on circular analogues of t-interval and t-track graphs.

Some more results

MAXIMUM CLIQUE on circular analogues of t-interval and t-track graphs.

The complement of the 2-subdivision of any graph is both a circular 2-interval graph and a circular 2-track graph.

Some more results

MAXIMUM CLIQUE on circular analogues of t-interval and t-track graphs.

The complement of the 2-subdivision of any graph is both a circular 2-interval graph and a circular 2-track graph.

Theorem

MAXIMUM CLIQUE is APX-hard in circular 2-interval graphs.

Theorem

MAXIMUM CLIQUE is APX-hard in circular 2-track graphs.

Corollary
MAXIMUM CLIQUE is NP-complete on unit circular 2-interval graphs.

Open problems

- Is there a PTAS for MAXIMUM CLIQUE in unit 2-interval graphs and unit 3-track graphs or are the problems APX-hard?
- Can the approximation ratio of t for MAXIMUM CLIQUE in t-interval graphs be improved? Not better than $O\left(t^{1-\epsilon}\right)$.
- Is MAXIMUM CLIQUE NP-complete for unit circular 2-track graphs?
- What approximation ratio can be obtained if a representation of the graph is not known?

