

Hamilton cycles in the random geometric graph

Xavier Pérez Giménez

Séminaire AIGCo — LIRMM

Random graphs and related models

- Erdős-Rényi models: $\mathcal{G}(n, p)$ and $\mathcal{G}(n, m)$
- Variations: fixed degree sequence, regular graphs...
- Power-law degree sequence: inhomogeneous random graphs, preferential attachment, internet graph...
- Random boolean formulas
- Statistical mechanics: Ising model, Potts model
- Proximity graphs: Random geometric graphs, nearest neighbour graphs, Delaunay graphs, models of wireless networks...

Threshold functions

Example: existence of triangles

Threshold functions (sharp)

Example: giant component, connectedness, Hamilton cycles...

Random graph process

 Start with empty graph on *n* vertices; add edges one by one; end with the complete graph

$$\mathcal{G}_0, \mathcal{G}_1, \ldots, \mathcal{G}_m, \ldots, \mathcal{G}_{\binom{n}{2}}$$

- \mathcal{G}_m is distributed like $\mathcal{G}(n, m)$
- We look for "hitting time" properties

Wireless networks

Random geometric graph

(Gilbert 1961)

n vertices radius r = r(n)

 $n
ightarrow \infty$

no giant component yet

$$r \sim \sqrt{C/n}$$

giant component!

still disconnected!

$$r = \sqrt{\frac{\log n + O(1)}{\pi n}}$$

higher connectivity

 $\Theta(1/r)$

bad expansion

What about hamilton cycles?

Necessary conditions: min. deg. \geq 2, 2-connectivity

Are they sufficient for the RGG?

What about hamilton cycles?

Necessary conditions: min. deg. \geq 2, 2-connectivity

Are they sufficient for the RGG?

Earlier results

Thm (Petit 2001)

The RGG with $r = \sqrt{\omega(\log n)/n}$ has a.a.s. a Hamilton cycle.

Thm (Díaz, Mitsche & P.G. 2007)

For any $\epsilon > 0$, the RGG with $r \ge (1 + \epsilon)\sqrt{\frac{\log n}{\pi n}}$ has a.a.s. a Hamilton cycle. (extension to general ℓ_p norm)

Recent results

Thm (Ballogh, Bollobás, Krivelevich, Müller, P.G., Walters & Wormald 2010)

In the RGG process: Hamiltonian \iff min. deg. \ge 2 (a.a.s.) (extension to general dimension and ℓ_{ρ} norm)

Thm (Ballogh, Bollobás & Walters 2010)

Weaker analogue for the *k*-Nearest Neighbour Graph.

Thm (Krivelevich & Müller 2010)

Pancyclic \iff min. deg. \ge 2 (a.a.s.)

Recent results

Thm (Ballogh, Bollobás, Krivelevich, Müller, P.G., Walters & Wormald 2010)

In the RGG process: Hamiltonian \iff min. deg. \ge 2 (a.a.s.) (extension to general dimension and ℓ_{ρ} norm)

Thm (Müller, P.G. & Wormald 2010)

k/2 disjoint Hamilton cycles \iff min. deg. $\ge k$ (a.a.s.) (extension to general dimension and ℓ_p norm)

Main ideas: tesselation

Set
$$r = \sqrt{\frac{\log n}{\pi n}}$$
 (not 2-connected)

 \Box $\ddagger \delta r$

■ dense (≥ M points)

sparse (< *M* points)

Main ideas: tesselation

Set
$$r = \sqrt{\frac{\log n}{\pi n}}$$
 (not 2-connected)

 \Box $i \delta r$

■ dense (≥ M points)

sparse (< *M* points)

Main ideas: tesselation

Set
$$r = \sqrt{\frac{\log n}{\pi n}}$$
 (not 2-connected)

 \Box $i \delta r$

■ dense (≥ M points)

sparse (< *M* points)

Main ideas: large scale template

Main ideas: large scale template

Main ideas: large scale template

a bit harder!

Open question

Are there always $\lfloor \frac{\delta(RGG)}{2} \rfloor$ edge disjoint Hamilton cycles?

thank you!

