

Hamilton cycles in the random geometric graph

Xavier Pérez Giménez

Séminaire AIGCo - LIRMM

Montpellier, June 21, 2012

Random graphs and related models

- Erdős-Rényi models: $\mathcal{G}(n, p)$ and $\mathcal{G}(n, m)$
- Variations: fixed degree sequence, regular graphs...
- Power-law degree sequence: inhomogeneous random graphs, preferential attachment, internet graph...
- Random boolean formulas
- Statistical mechanics: Ising model, Potts model
- Proximity graphs: Random geometric graphs, nearest neighbour graphs, Delaunay graphs, models of wireless networks...

Threshold functions

Usual setting:

- $n \rightarrow \infty$ vertices,
- $p=p(n)$ "density" parameter,
- property Q

Example: existence of triangles

Threshold functions (sharp)

Usual setting:

- $n \rightarrow \infty$ vertices,
- $p=p(n)$ "density" parameter,
- property Q

Example: giant component, connectedness, Hamilton cycles...

Random graph process

- Start with empty graph on n vertices; add edges one by one; end with the complete graph

$$
\mathcal{G}_{0}, \mathcal{G}_{1}, \ldots, \mathcal{G}_{m}, \ldots, \mathcal{G}_{\binom{n}{2}}
$$

- \mathcal{G}_{m} is distributed like $\mathcal{G}(n, m)$
- We look for "hitting time" properties

Wireless networks

IIINI

Random geometric graph

(Gilbert 1961)
n vertices radius $r=r(n)$
$n \rightarrow \infty$

Random process: $0 \leq r \leq \sqrt{2}$

Random process: $0 \leq r \leq \sqrt{2}$

Random process: $0 \leq r \leq \sqrt{2}$

Random process: $0 \leq r \leq \sqrt{2}$

no giant component yet

Random process: $0 \leq r \leq \sqrt{2}$

$$
r \sim \sqrt{C / n}
$$

giant component!

Random process： $0 \leq r \leq \sqrt{2}$

still disconnected！

Random process: $0 \leq r \leq \sqrt{2}$

connected
$=$
no isolated vertices
(a.a.s.)

$$
r=\sqrt{\frac{\log n+O(1)}{\pi n}}
$$

Random process: $0 \leq r \leq \sqrt{2}$

2-connected
=
no deg. 1 vertices
(a.a.s.)
$r=\sqrt{\frac{\log n+\log \log n+O(1)}{\pi n}}$

Random process: $0 \leq r \leq \sqrt{2}$

higher connectivity

Random process: $0 \leq r \leq \sqrt{2}$

still large diameter:

$$
\Theta(1 / r)
$$

bad expansion

What about hamilton cycles?

Necessary conditions: min. deg. ≥ 2, 2-connectivity

Are they sufficient for the RGG?

What about hamilton cycles?

Necessary conditions: min. deg. ≥ 2, 2-connectivity

Are they sufficient for the RGG?

Earlier results

Thm (Petit 2001)

The RGG with $r=\sqrt{\omega(\log n) / n}$ has a.a.s. a Hamilton cycle.

Thm (Díaz, Mitsche \& P.G. 2007)

For any $\epsilon>0$, the RGG with $r \geq(1+\epsilon) \sqrt{\frac{\log n}{\pi n}}$ has a.a.s. a Hamilton cycle.
(extension to general ℓ_{p} norm)

Recent results

```
Thm (Ballogh, Bollobás, Krivelevich, Müller, P.G., Walters & Wormald 2010)
In the RGG process:
Hamiltonian \(\Longleftrightarrow\) min. deg. \(\geq 2\) (a.a.s.)
(extension to general dimension and \(\ell_{p}\) norm)
```


Thm (Ballogh, Bollobás \& Walters 2010)

Weaker analogue for the k-Nearest Neighbour Graph.

Thm (Krivelevich \& Müller 2010)

Pancyclic \Longleftrightarrow min. deg. ≥ 2 (a.a.s.)

Recent results

Thm (Ballogh, Bollobás, Krivelevich, Müller, P.G., Walters \& Wormald 2010)
In the RGG process:
Hamiltonian \Longleftrightarrow min. deg. ≥ 2 (a.a.s.)
(extension to general dimension and ℓ_{p} norm)

Thm (Müller, P.G. \& Wormald 2010)

$k / 2$ disjoint Hamilton cycles \Longleftrightarrow min. deg. $\geq k$ (a.a.s.) (extension to general dimension and ℓ_{p} norm)

Main ideas: tesselation

Set $r=\sqrt{\frac{\log n}{\pi n}}$ (not 2-connected)
$\square!\delta r$
\square dense ($\geq M$ points)
\square sparse (< M points)

Main ideas: tesselation

Set $r=\sqrt{\frac{\log n}{\pi n}}$ (not 2-connected)
$\square!\delta r$
\square dense ($\geq M$ points)
\square sparse (< M points)

Main ideas: tesselation

Set $r=\sqrt{\frac{\log n}{\pi n}}$
(not 2-connected)
$\square!\delta r$
\square dense ($\geq M$ points)
\square sparse (< M points)

Main ideas：large scale template

【【【】】【 max planck institut

Main ideas: large scale template

 informatik

Main ideas: large scale template

Main ideas: rerouting I

Main ideas: rerouting I

Main ideas: rerouting II

Main ideas: rerouting III

a bit harder!

Open question

Are there always $\left\lfloor\frac{\delta(R G G)}{2}\right\rfloor$ edge disjoint Hamilton cycles?

IIIUII

thank you!

