Paul Dorbec Université de Bordeaux - CNRS

Graph protection Workshop, 2012 July 8th

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

- Introduction

Definition of power domination

Electrical system management

Problem :

Monitor all vertices and edges of a network with PMU (Phase Measurement Units) using rules :

- 1. a PMU monitors its vertex and its incident edges
- 2. vertex incident to a monitored edge \Rightarrow monitored (Ohm law)
- 3. edge joining 2 monitored vertices \Rightarrow monitored (Ohm law)
- 4. degree d monitored vertex incident to d 1 monitored edges $\Rightarrow d^{th}$ edge monitored (Kirchhoff law).

Equivalent rules :

Monitor all vertices of the network (\Rightarrow edges monitored from 3)

domination a PMU monitors the closed neighborhood of its vertex (1+2)propagation degree d monitored vertex with d-1 monitored neighbours $\Rightarrow d^{th}$ neighbour monitored ((3+4)+2).

Introduction

L_Definition of power domination

Example : $\gamma_{\mathrm{P}}(P_4 \Box P_5) \leq 2$

Domination

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Introduction

L_Definition of power domination

Example : $\gamma_{\mathrm{P}}(P_4 \Box P_5) \leq 2$

Propagation 1

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction

L_Definition of power domination

Example : $\gamma_{\mathrm{P}}(P_4 \Box P_5) \leq 2$

Propagation 2

(ロ)、(型)、(E)、(E)、 E) の(の)

Introduction

L_Definition of power domination

Example : $\gamma_{\mathrm{P}}(P_4 \Box P_5) \leq 2$

Propagation 3

(ロ)、(型)、(E)、(E)、 E) の(の)

- Introduction

L Definition of power domination

Difficulties...

Does $\gamma_{\mathrm{P}}(G)$ decrease when you

- add edges?
- delete edges ?
- delete vertices?
- add vertices?

- Introduction

L Definition of power domination

Difficulties...

Does $\gamma_{\mathrm{P}}(G)$ decrease when you

- add edges?
- delete edges ?
- delete vertices?
- add vertices?

- Introduction

L Definition of power domination

Difficulties...

Does $\gamma_{\mathrm{P}}(G)$ decrease when you

- add edges?
- delete edges ?
- delete vertices?
- add vertices?

- Introduction

Definition of power domination

Difficulties...

Does $\gamma_{\mathrm{P}}(G)$ decrease when you

- add edges ?
- delete edges ?
- delete vertices?
- add vertices?

- Introduction

L Definition of power domination

Difficulties...

Does $\gamma_{\mathrm{P}}(G)$ decrease when you

- add edges ?
- delete edges ?
- delete vertices?
- add vertices?

- Introduction

Definition of power domination

Difficulties...

Does $\gamma_{\mathrm{P}}(G)$ decrease when you

- add edges ?
- delete edges ?
- delete vertices?
- add vertices?

- Introduction

- Definition of power domination

Difficulties...

Does $\gamma_{\mathrm{P}}(G)$ decrease when you

- add edges ?
- delete edges ?
- delete vertices?
- add vertices?

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Introduction

Definition of power domination

Difficulties...

Does $\gamma_{\mathrm{P}}(G)$ decrease when you

- ▶ add edges ?
- delete edges ?
- delete vertices?
- add vertices?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 \Rightarrow No obvious heredity

- Introduction

- Definition of power domination

Monitored vertices

Definition :

G a graph, S a subset of vertices The set $\mathcal{P}^i(S)$ of vertices monitored by S at step i is defined by

(domination)

$$\mathcal{P}^0(S) = \mathcal{N}[S]$$

(propagation)

$$\mathcal{P}^{i+1}(S) = \left\{ N[v] \middle| egin{array}{c} v \in \mathcal{P}^{i}(S), \\ \left| N[v] \setminus \mathcal{P}^{i}(S)
ight| \leq \mathbf{1} \end{array}
ight\}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Definition of power domination

Monitored vertices

Definition : [CDMR2012]

G a graph, *S* a subset of vertices The set $\mathcal{P}^i(S)$ of vertices monitored by *S* at step *i* is defined by

(domination)

$$\mathcal{P}^0(S) = \mathcal{N}[S]$$

(propagation)

$$\mathcal{P}^{i+1}(S) = \left\{ N[v] \middle| egin{array}{c} v \in \mathcal{P}^{i}(S), \ \left| N[v] \setminus \mathcal{P}^{i}(S)
ight| \leq k \end{array}
ight\}$$

 $k=2, \mathcal{P}^0(S)$

- Definition of power domination

Monitored vertices

Definition : [CDMR2012]

G a graph, *S* a subset of vertices The set $\mathcal{P}^i(S)$ of vertices monitored by *S* at step *i* is defined by

(domination)

$$\mathcal{P}^0(S) = \mathcal{N}[S]$$

(propagation)

$$\mathcal{P}^{i+1}(\mathcal{S}) = \left\{ egin{array}{c|c} N[v] & v \in \mathcal{P}^i(\mathcal{S}), \ |N[v] \setminus \mathcal{P}^i(\mathcal{S})| \leq k \end{array}
ight\}$$

 $k = 2, \mathcal{P}^1(S)$

Definition of power domination

Monitored vertices

Definition : [CDMR2012]

G a graph, S a subset of vertices The set $\mathcal{P}^i(S)$ of vertices monitored by S at step *i* is defined by

(domination)

$$\mathcal{P}^0(S) = \mathcal{N}[S]$$

(propagation)

$$\mathcal{P}^{i+1}(\mathcal{S}) = \left\{ egin{array}{c|c} N[v] & v \in \mathcal{P}^i(\mathcal{S}), \ |N[v] \setminus \mathcal{P}^i(\mathcal{S})| \leq k \end{array}
ight\}$$

 $k = 2, \mathcal{P}^2(S)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition of power domination

Monitored vertices

Definition : [CDMR2012]

G a graph, S a subset of vertices The set $\mathcal{P}^i(S)$ of vertices monitored by S at step *i* is defined by

(domination)

$$\mathcal{P}^0(S) = \mathcal{N}[S]$$

(propagation)

$$\mathcal{P}^{i+1}(\mathcal{S}) = igg\{ oldsymbol{N}[oldsymbol{v}] \ \left| egin{array}{c} oldsymbol{v} \in \mathcal{P}^i(\mathcal{S}), \ igg| N[oldsymbol{v}] \setminus \mathcal{P}^i(\mathcal{S}) igg| \leq k \end{array}
ight\}$$

 $k=2, \mathcal{P}^{>3}(S)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition of power domination

Generalized power domination

Problem

Given a graph G, find its k-power domination number $\gamma_{P,k}(G)$ = smallest size of S such that $\mathcal{P}^{\infty}(S) = V(G)$.

- ▶ generalizes power domination ($\gamma_{\rm P,1} = \gamma_{\rm P}$)
- generalizes domination ($\gamma_{P,0} = \gamma$)
- helps to understand how power-domination is related to domination :
 - critical graphs : (k + 1)-crowns
 - general bounds
 - common linear algorithm on trees (and bounded treewidth)
 - other bounds for families of graphs...

Introduction

Definition of power domination

Common general bound

For G connected of order n

Lemma If $\Delta(G) \leq k + 1$, $\gamma_{\mathrm{P,k}}(G) = 1$

Lemma

Otherwise, there exist a minimum k-power dominating set containing only vertices of degree $\geq k + 2$

Theorem

If G is of order
$$n \ge k+2$$
, then $\gamma_{\mathrm{P,k}}(\mathsf{G}) \le rac{n}{k+2}$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

L Definition of power domination

Relation between $\gamma_{\rm P,k}$ for different k

Question $\label{eq:clearly} \mbox{Clearly, } \gamma_{{\rm P},k}({\it G}) \geq \gamma_{{\rm P},k+1}({\it G}). \mbox{ Can we say more }?$

Definition of power domination

Relation between $\gamma_{\mathrm{P,k}}$ for different k

Question

Clearly, $\gamma_{\mathrm{P},\mathrm{k}}(\mathcal{G}) \geq \gamma_{\mathrm{P},\mathrm{k}+1}(\mathcal{G})$. Can we say more?

Obs : No

For any sequence $(x_k)_k > 0$ finite and non-increasing, there exist G such that $\gamma_{\mathrm{P},k}(G) = x_k$.

On regular graphs

Theorem [Zhao,Kang,Chang,2006] G connected claw-free cubic $\Rightarrow \gamma_{\rm P}(G) \leq \frac{n}{4}$.

Theorem [CDMR2012]

G connected claw-free (k + 2)-regular $\Rightarrow \gamma_{P,k}(G) \leq \frac{n}{k+3}.$

both with equality iff G is isomorphic to the graph :

On regular graphs

Theorem [Zhao,Kang,Chang,2006] G connected claw-free cubic $\Rightarrow \gamma_{\rm P}(G) \leq \frac{n}{4}$.

Theorem [CDMR2012]

G connected claw-free (k + 2)-regular $\Rightarrow \gamma_{\mathrm{P,k}}(G) \leq \frac{n}{k+3}.$

both with equality iff G is isomorphic to the graph :

Theorem [DHLMR2012+]

G connected (k + 2)-regular, $G \neq K_{k+2,k+2}$, $\Rightarrow \gamma_{\mathrm{P,k}}(G) \leq \frac{n}{k+3}$.

・ロト ・西ト ・ヨト ・ヨー うらぐ

Let G be a connected (k + 2)-regular graph.

For each vertex taken, find k + 3 new monitored vertices typically : its neighbours ⇒ a 2-packing.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let G be a connected (k + 2)-regular graph.

For each vertex taken, find k + 3 new monitored vertices

typically : its neighbours \Rightarrow a 2-packing.

- then look for obstructions... = (A, B)-configurations :
 - ▶ \exists a monitored vertex $v (\in B)$ that has unmonitored neighbours $(\in A)$.

- v does not propagate so at least k + 1,
- v is monitored so at least one monitored neighbour.

Let G be a connected (k + 2)-regular graph.

For each vertex taken, find k + 3 new monitored vertices

typically : its neighbours \Rightarrow a 2-packing.

- then look for obstructions... = (A, B)-configurations :
 - ▶ \exists a monitored vertex $v (\in B)$ that has unmonitored neighbours $(\in A)$.

- v does not propagate so at least k + 1,
- v is monitored so at least one monitored neighbour.
- ▶ if we find 2 more to put in A, we are done...

Let G be a connected (k + 2)-regular graph.

For each vertex taken, find k + 3 new monitored vertices

typically : its neighbours \Rightarrow a 2-packing.

- then look for obstructions... = (A, B)-configurations :
 - ▶ \exists a monitored vertex $v (\in B)$ that has unmonitored neighbours $(\in A)$.
 - v does not propagate so at least k + 1,
 - v is monitored so at least one monitored neighbour.
- ▶ if we find 2 more to put in A, we are done...

Definition : (A, B)-configurations

(P1). $|A| \in \{k + 1, k + 2\}$. (P2). $B = N(A) \setminus A$. (P3). $d_A(v) = k + 1$ for each vertex $v \in B$. (P4). *B* is an independent set.

On the blackboard

► We have :

Definition : (A, B)-configurations

(P1). $|A| \in \{k + 1, k + 2\}$. (P2). $B = N(A) \setminus A$. (P3). $d_A(v) = k + 1$ for each vertex $v \in B$. (P4). *B* is an independent set.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

On the blackboard

► We have :

Definition : (A, B)-configurations

(P1). $|A| \in \{k + 1, k + 2\}$. (P2). $B = N(A) \setminus A$. (P3). $d_A(v) = k + 1$ for each vertex $v \in B$. (P4). B is an independent set.

► We can add more :

(P5). $d_B(v) \ge 1$ for each vertex $v \in A$. **(P6).** If k is odd, then |A| = k + 1. **(P7).** $|B| \le k + 2$.

On the blackboard

► We have :

Definition : (A, B)-configurations

(P1). $|A| \in \{k + 1, k + 2\}$. (P2). $B = N(A) \setminus A$. (P3). $d_A(v) = k + 1$ for each vertex $v \in B$. (P4). B is an independent set.

We can add more :

(P5). $d_B(v) \ge 1$ for each vertex $v \in A$. **(P6).** If k is odd, then |A| = k + 1. **(P7).** $|B| \le k + 2$.

▶ then we show they can't intersect too much... exemple $A \cap A' > 1$.

• Remains some family \mathcal{F}_{k} ...

Final trick

- Remove from G any edge not in a C_3 or a C_4 .
- every \mathcal{F}_k in G remain and is isolated : take a vertex in each

Final trick

- Remove from G any edge not in a C_3 or a C_4 .
- every \mathcal{F}_k in G remain and is isolated : take a vertex in each
- ▶ take a vertex in every other (*A*, *B*)-configurations.
- complete into a maximal packing of G.
- propagate, then increase the set iterately : possible since no (A, B)-configurations left...

Summary

Recall that if $\Delta(G) \leq k+1$, $\gamma_{\mathrm{P,k}}(G) = 1$ We proved :

- Theorem [DHLMR2012+]
- G connected (k + 2)-regular, $G \neq K_{k+2,k+2}$, $\Rightarrow \gamma_{\mathrm{P,k}}(G) \leq \frac{n}{k+3}$.

What next? Another bound? (I think not $\frac{n}{r+1}$)

Thanks for your attention.

CDMR2012: Chang, Dorbec, Montassier, Raspaud, Discrete Appl. Math. **DHLMR2012**+ : Dorbec, Henning, Lowenstein, Montassier, Raspaud, manuscript