Generalized power domination in regular graphs

Paul Dorbec
Université de Bordeaux - CNRS

Graph protection Workshop, 2012 July 8th

Electrical system management

Problem :

Monitor all vertices and edges of a network with PMU (Phase Measurement Units) using rules :

1. a PMU monitors its vertex and its incident edges
2. vertex incident to a monitored edge \Rightarrow monitored (Ohm law)
3. edge joining 2 monitored vertices \Rightarrow monitored (Ohm law)
4. degree d monitored vertex incident to $d-1$ monitored edges $\Rightarrow d^{\text {th }}$ edge monitored (Kirchhoff law).

Equivalent rules :

Monitor all vertices of the network (\Rightarrow edges monitored from 3) domination a PMU monitors the closed neighborhood of its vertex $(1+2)$
propagation degree d monitored vertex with $d-1$ monitored neighbours \Rightarrow $d^{\text {th }}$ neighbour monitored $((3+4)+2)$.

Example : $\gamma_{\mathrm{P}}\left(P_{4} \square P_{5}\right) \leq 2$

Domination

Example : $\gamma_{\mathrm{P}}\left(P_{4} \square P_{5}\right) \leq 2$

Propagation 1

Example : $\gamma_{\mathrm{P}}\left(P_{4} \square P_{5}\right) \leq 2$

Propagation 2

Example : $\gamma_{\mathrm{P}}\left(P_{4} \square P_{5}\right) \leq 2$

Propagation 3

Difficulties...

Does $\gamma_{\mathrm{P}}(G)$ decrease when you

- add edges ?
- delete edges?
- delete vertices?
- add vertices ?

Difficulties...

Does $\gamma_{\mathrm{P}}(G)$ decrease when you

- add edges?
- delete edges?
- delete vertices?
- add vertices?

Difficulties...

Does $\gamma_{\mathrm{P}}(G)$ decrease when you

- add edges ?
- delete edges?
- delete vertices?
- add vertices ?

Difficulties...

Does $\gamma_{\mathrm{P}}(G)$ decrease when you

- add edges ?
- delete edges?
- delete vertices?
- add vertices?

Difficulties...

Does $\gamma_{\mathrm{P}}(G)$ decrease when you

- add edges ?
- delete edges?
- delete vertices?
- add vertices?

Difficulties...

Does $\gamma_{\mathrm{P}}(G)$ decrease when you

- add edges ?
- delete edges?
- delete vertices?
- add vertices?

Difficulties...

Does $\gamma_{\mathrm{P}}(G)$ decrease when you

- add edges?
- delete edges?
- delete vertices?
- add vertices?

Difficulties...

Does $\gamma_{\mathrm{P}}(G)$ decrease when you

- add edges ?
- delete edges?
- delete vertices?
- add vertices?
\Rightarrow No obvious heredity

Monitored vertices

Definition :

G a graph, S a subset of vertices
The set $\mathcal{P}^{i}(S)$ of vertices monitored by S at step i is defined by

- (domination)

$$
\mathcal{P}^{0}(S)=N[S]
$$

- (propagation)

$$
\mathcal{P}^{i+1}(S)=\left\{N[v] \left\lvert\, \begin{array}{l}
v \in \mathcal{P}^{i}(S) \\
\left|N[v] \backslash \mathcal{P}^{i}(S)\right| \leq 1
\end{array}\right.\right\}
$$

Monitored vertices

Definition: [CDMR2012]

$$
k=2, \mathcal{P}^{0}(S)
$$

G a graph, S a subset of vertices
The set $\mathcal{P}^{i}(S)$ of vertices monitored by S at step i is defined by

- (domination)

$$
\mathcal{P}^{0}(S)=N[S]
$$

- (propagation)

$$
\mathcal{P}^{i+1}(S)=\left\{N[v] \left\lvert\, \begin{array}{l}
v \in \mathcal{P}^{i}(S) \\
\left|N[v] \backslash \mathcal{P}^{i}(S)\right| \leq k
\end{array}\right.\right\}
$$

Monitored vertices

Definition: [CDMR2012]

$k=2, \mathcal{P}^{1}(S)$
G a graph, S a subset of vertices
The set $\mathcal{P}^{i}(S)$ of vertices monitored by S at step i is defined by

- (domination)

$$
\mathcal{P}^{0}(S)=N[S]
$$

- (propagation)

$$
\mathcal{P}^{i+1}(S)=\left\{\begin{array}{l|l}
N[v] & \begin{array}{l}
v \in \mathcal{P}^{i}(S), \\
\left|N[v] \backslash \mathcal{P}^{i}(S)\right| \leq k
\end{array}
\end{array}\right\}
$$

Monitored vertices

Definition: [CDMR2012]

G a graph, S a subset of vertices
The set $\mathcal{P}^{i}(S)$ of vertices monitored by S at step i is defined by

- (domination)

$$
\mathcal{P}^{0}(S)=N[S]
$$

- (propagation)

$$
\mathcal{P}^{i+1}(S)=\left\{N[v] \left\lvert\, \begin{array}{l}
v \in \mathcal{P}^{i}(S) \\
\left|N[v] \backslash \mathcal{P}^{i}(S)\right| \leq k
\end{array}\right.\right\}
$$

$k=2, \mathcal{P}^{2}(S)$

Monitored vertices

Definition: [CDMR2012]

$$
k=2, \mathcal{P}^{>3}(S)
$$

G a graph, S a subset of vertices
The set $\mathcal{P}^{i}(S)$ of vertices monitored by S at step i is defined by

- (domination)

$$
\mathcal{P}^{0}(S)=N[S]
$$

- (propagation)

$$
\mathcal{P}^{i+1}(S)=\left\{N[v] \left\lvert\, \begin{array}{l}
v \in \mathcal{P}^{i}(S) \\
\left|N[v] \backslash \mathcal{P}^{i}(S)\right| \leq k
\end{array}\right.\right\}
$$

Generalized power domination

Problem

Given a graph G, find its k-power domination number $\gamma_{\mathrm{P}, \mathrm{k}}(G)$ $=$ smallest size of S such that $\mathcal{P}^{\infty}(S)=V(G)$.

- generalizes power domination $\left(\gamma_{\mathrm{P}, 1}=\gamma_{\mathrm{P}}\right)$
- generalizes domination $\left(\gamma_{\mathrm{P}, 0}=\gamma\right)$
- helps to understand how power-domination is related to domination:
- critical graphs : $(k+1)$-crowns
- general bounds
- common linear algorithm on trees (and bounded treewidth)
- other bounds for families of graphs...

Common general bound

For G connected of order n
Lemma
If $\Delta(G) \leq k+1, \gamma_{\mathrm{P}, \mathrm{k}}(G)=1$
Lemma
Otherwise, there exist a minimum k-power dominating set containing only vertices of degree $\geq k+2$

Theorem
If G is of order $n \geq k+2$, then $\gamma_{\mathrm{P}, \mathrm{k}}(G) \leq \frac{n}{k+2}$

Relation between $\gamma_{\mathrm{P}, \mathrm{k}}$ for different k

Question

Clearly, $\gamma_{\mathrm{P}, \mathrm{k}}(G) \geq \gamma_{\mathrm{P}, \mathrm{k}+1}(G)$. Can we say more?

Relation between $\gamma_{\mathrm{P}, \mathrm{k}}$ for different k

Question

Clearly, $\gamma_{\mathrm{P}, \mathrm{k}}(G) \geq \gamma_{\mathrm{P}, \mathrm{k}+1}(G)$. Can we say more?
Obs: No
For any sequence $\left(x_{k}\right)_{k}>0$ finite and non-increasing, there exist G such that $\gamma_{\mathrm{P}, \mathrm{k}}(G)=x_{k}$.

On regular graphs

Theorem [Zhao,Kang,Chang,2006]
G connected claw-free cubic $\Rightarrow \gamma_{\mathrm{P}}(G) \leq \frac{n}{4}$.
Theorem [CDMR2012]
G connected claw-free $(k+2)$-regular
$\Rightarrow \gamma_{\mathrm{P}, \mathrm{k}}(G) \leq \frac{n}{k+3}$.
both with equality iff G is isomorphic to the graph:

On regular graphs

Theorem [Zhao,Kang,Chang,2006]
G connected claw-free cubic $\Rightarrow \gamma_{\mathrm{P}}(G) \leq \frac{n}{4}$.
Theorem [CDMR2012]
G connected claw-free $(k+2)$-regular $\Rightarrow \gamma_{\mathrm{P}, \mathrm{k}}(G) \leq \frac{n}{k+3}$.
both with equality iff G is isomorphic to the graph:

Theorem [DHLMR2012+]
G connected $(k+2)$-regular, $G \neq K_{k+2, k+2}, \Rightarrow \gamma_{\mathrm{P}, \mathrm{k}}(G) \leq \frac{n}{k+3}$.

(A, B)-configurations

Let G be a connected $(k+2)$-regular graph.

- For each vertex taken, find $k+3$ new monitored vertices typically : its neighbours \Rightarrow a 2-packing.

(A, B)-configurations

Let G be a connected ($k+2$)-regular graph.

- For each vertex taken, find $k+3$ new monitored vertices typically : its neighbours \Rightarrow a 2-packing.
- then look for obstructions... $=(A, B)$-configurations :
- \exists a monitored vertex $v(\in B)$ that has unmonitored neighbours $(\in A)$.
- v does not propagate so at least $k+1$,
- v is monitored so at least one monitored neighbour.

(A, B)-configurations

Let G be a connected $(k+2)$-regular graph.

- For each vertex taken, find $k+3$ new monitored vertices typically : its neighbours \Rightarrow a 2-packing.
- then look for obstructions... $=(A, B)$-configurations :
- \exists a monitored vertex $v(\in B)$ that has unmonitored neighbours $(\in A)$.
- v does not propagate so at least $k+1$,
- v is monitored so at least one monitored neighbour.
- if we find 2 more to put in A, we are done...

(A, B)-configurations

Let G be a connected ($k+2$)-regular graph.

- For each vertex taken, find $k+3$ new monitored vertices
typically : its neighbours \Rightarrow a 2-packing.
- then look for obstructions... $=(A, B)$-configurations :
- \exists a monitored vertex $v(\in B)$ that has unmonitored neighbours $(\in A)$.
- v does not propagate so at least $k+1$,
- v is monitored so at least one monitored neighbour.
- if we find 2 more to put in A, we are done...

Definition : (A, B)-configurations
(P1). $|A| \in\{k+1, k+2\}$.
(P2). $B=N(A) \backslash A$.
(P3). $d_{A}(v)=k+1$ for each vertex $v \in B$.
(P4). B is an independent set.

On the blackboard

- We have :

Definition : (A, B)-configurations
(P1). $|A| \in\{k+1, k+2\}$.
(P2). $B=N(A) \backslash A$.
(P3). $d_{A}(v)=k+1$ for each vertex $v \in B$.
(P4). B is an independent set.

On the blackboard

- We have :

Definition : (A, B)-configurations
(P1). $|A| \in\{k+1, k+2\}$.
(P2). $B=N(A) \backslash A$.
(P3). $d_{A}(v)=k+1$ for each vertex $v \in B$.
(P4). B is an independent set.

- We can add more :
(P5). $d_{B}(v) \geq 1$ for each vertex $v \in A$.
(P6). If k is odd, then $|A|=k+1$.
(P7). $|B| \leq k+2$.

On the blackboard

- We have :

Definition : (A, B)-configurations
(P1). $|A| \in\{k+1, k+2\}$.
(P2). $B=N(A) \backslash A$.
(P3). $d_{A}(v)=k+1$ for each vertex $v \in B$.
(P4). B is an independent set.

- We can add more :
(P5). $d_{B}(v) \geq 1$ for each vertex $v \in A$.
(P6). If k is odd, then $|A|=k+1$.
(P7). $|B| \leq k+2$.
- then we show they can't intersect too much... exemple $A \cap A^{\prime}>1$.
- Remains some family $\mathcal{F}_{k} \ldots$

Final trick

- Remove from G any edge not in a C_{3} or a C_{4}.
- every \mathcal{F}_{k} in G remain and is isolated : take a vertex in each

Final trick

- Remove from G any edge not in a C_{3} or a C_{4}.
- every \mathcal{F}_{k} in G remain and is isolated : take a vertex in each
- take a vertex in every other (A, B)-configurations.
- complete into a maximal packing of G.
- propagate, then increase the set iterately : possible since no (A, B)-configurations left...

Summary

Recall that if $\Delta(G) \leq k+1, \gamma_{\mathrm{P}, \mathrm{k}}(G)=1$
We proved:
Theorem [DHLMR2012+]
G connected $(k+2)$-regular, $G \neq K_{k+2, k+2}, \Rightarrow \gamma_{\mathrm{P}, \mathrm{k}}(G) \leq \frac{n}{k+3}$.

What next ? Another bound? (I think not $\frac{n}{r+1}$)

Thanks for your attention.

CDMR2012 : Chang, Dorbec, Montassier, Raspaud, Discrete Appl. Math. DHLMR2012+ : Dorbec, Henning, Lowenstein, Montassier, Raspaud, manuscript

