Rigidity, Triangles and Minors

Boris Albar

I3M/LIRMM, Montpellier

3 Mai 2012

Tensegrity

A Tensegrity structure is a physical system consisting of a finite number of inextendable cables and incompressible bars linked together by their extremities.

Tensegrity

A Tensegrity structure is a physical system consisting of a finite number of inextendable cables and incompressible bars linked together by their extremities.

Which of these structures are "stable" ?
Rigidity, Triangles and Minors

Stress

Given a embedding $\rho: V \longmapsto \mathbb{R}^{d}$ of a graph $G=(V, E)$. A stress on ρ is a function $\omega: V \times V \rightarrow \mathbb{R}$ such that for all $u \in V$:

$$
\sum_{\{u, v\} \in E} \omega(\{u, v\})(\rho(v)-\rho(u))=0
$$

Definition

Let $G=(V, E)$ a graph. An embedding $\rho: V \longmapsto \mathbb{R}^{d}$ of G is d-stress free if every stress is trivial $(\omega=0)$.

Definition
 G is generically d-stress free if the set of all d-stress free embeddings of G is open and dense in the set of all embeddings of $G\left(\simeq \mathbb{R}^{d n}\right)$.

Stress

Given a embedding $\rho: V \longmapsto \mathbb{R}^{d}$ of a graph $G=(V, E)$. A stress on ρ is a function $\omega: V \times V \rightarrow \mathbb{R}$ such that for all $u \in V$:

$$
\sum_{\{u, v\} \in E} \omega(\{u, v\})(\rho(v)-\rho(u))=0
$$

Definition
Let $G=(V, E)$ a graph. An embedding $\rho: V \longmapsto \mathbb{R}^{d}$ of G is d-stress free if every stress is trivial $(\omega=0)$.

Definition
G is generically d-stress free if the set of all d-stress free embeddings of G is open and dense in the set of all embeddings of $G\left(\simeq \mathbb{R}^{d n}\right)$.

Stress

Given a embedding $\rho: V \longmapsto \mathbb{R}^{d}$ of a graph $G=(V, E)$. A stress on ρ is a function $\omega: V \times V \rightarrow \mathbb{R}$ such that for all $u \in V$:

$$
\sum_{\{u, v\} \in E} \omega(\{u, v\})(\rho(v)-\rho(u))=0
$$

Definition

Let $G=(V, E)$ a graph. An embedding $\rho: V \longmapsto \mathbb{R}^{d}$ of G is d-stress free if every stress is trivial $(\omega=0)$.

Definition

G is generically d-stress free if the set of all d-stress free embeddings of G is open and dense in the set of all embeddings of $G\left(\simeq \mathbb{R}^{d n}\right)$.

Example: A non-trivial 2-stress on K_{4}

History

Theorem (Cauchy, 1813)
Every convex polyhedron is 3-stress free.

Theorem (Maxwell, 1864)
 Every polyhedron admits a non-trivial 2-stress.

Corollary
Every 3-connected planar graph admits a non-trivial 2-stress.

History

Theorem (Cauchy, 1813)
Every convex polyhedron is 3-stress free.

Theorem (Maxwell, 1864)
Every polyhedron admits a non-trivial 2-stress.

History

Theorem (Cauchy, 1813)
Every convex polyhedron is 3-stress free.

Theorem (Maxwell, 1864)
Every polyhedron admits a non-trivial 2-stress.

Corollary

Every 3-connected planar graph admits a non-trivial 2-stress.

Example: A non-trivial 3-stress on a non-convex polyhedron

History (2)

```
Theorem (Gluck, 1974)
Almost all polyhedra are 3-stress free.
```

Planar graphs are generically 3-stress free.

History (2)

Theorem (Gluck, 1974)
Almost all polyhedra are 3-stress free.

Corollary
Planar graphs are generically 3-stress free.

Rigidity and Minors of Graphs

Theorem (Nevo, 2007)
For $3 \leq r \leq 6$, every K_{r}-minor free graph is generically r - 2 -stress free.

Rigidity and Minors of Graphs

Theorem (Nevo, 2007)
For $3 \leq r \leq 6$, every K_{r}-minor free graph is generically r - 2 -stress free.

Theorem (Nevo, 2007)
For $3 \leq d \leq 5$, if each edge of G belongs to at least $d-2$ triangles then G contains a K_{d} minor.
If each edge of G belongs to at least 4 triangles then G contains a K_{6} minor or is a clique-sum over $K_{l}, I \leq 4$.

Proof for $d=3,4,5$

We will use extensively the following theorem of Mader.
Theorem (Mader, 1968)
For $1 \leq r \leq 7$, every K_{r} minor-free graph has at most $(r-2) n-\binom{r-1}{2}$ edges.

Proof for $d=3,4,5$

We will use extensively the following theorem of Mader.
Theorem (Mader, 1968)
For $1 \leq r \leq 7$, every K_{r} minor-free graph has at most $(r-2) n-\binom{r-1}{2}$ edges.

- For $d=3$, each edge belongs to at least one triangle and trivially contains a K_{3} minor.

Proof for $d=3,4,5$

We will use extensively the following theorem of Mader.
Theorem (Mader, 1968)
For $1 \leq r \leq 7$, every K_{r} minor-free graph has at most $(r-2) n-\binom{r-1}{2}$ edges.

- For $d=3$, each edge belongs to at least one triangle and trivially contains a K_{3} minor.
- For $d=4$, by Mader's theorem, $|E| \leq 2 n-3$, so there is a vertex u such that $\operatorname{deg}(u) \leq 3$. And since each edge belongs to at least 2 triangles, $N(u)$ is isomorphic to K_{3}.

Proof for $d=3,4,5$

- For $d=5$, by Mader's theorem, $|E| \leq 3 n-6$, so there is a vertex u such that $\operatorname{deg}(u) \leq 5$.

If $\operatorname{deg}(u)=4$ then $N(u)$ is isomorphic to K_{4}.
Now suppose that $\operatorname{deg}(u)=5$. Since each edge $u v$ with $v \in N(u)$ belongs to at least 3 triangles, then for every $v \in N(u), \operatorname{deg}(v) \geq 3$ in $N(u)$.

Hence $|e(N(u))| \geq\lceil(3 \cdot 5) / 2\rceil=8$. But $N(u)$ is K_{4}-minor free and so $|e(N(u))| \leq 2 \cdot 5-3=7$.

Proof for $d=3,4,5$

- For $d=5$, by Mader's theorem, $|E| \leq 3 n-6$, so there is a vertex u such that $\operatorname{deg}(u) \leq 5$.

If $\operatorname{deg}(u)=4$ then $N(u)$ is isomorphic to K_{4}.
Now suppose that $\operatorname{deg}(u)=5$. Since each edge $u v$ with $v \in N(u)$ belongs to at least 3 triangles, then for every $v \in N(u), \operatorname{deg}(v) \geq 3$ in $N(u)$.

Hence $|e(N(u))| \geq\lceil(3 \cdot 5) / 2\rceil=8$. But $N(u)$ is K_{4}-minor free and so $|e(N(u))| \leq 2 \cdot 5-3=7$.

Proof for $d=3,4,5$

- For $d=5$, by Mader's theorem, $|E| \leq 3 n-6$, so there is a vertex u such that $\operatorname{deg}(u) \leq 5$.

If $\operatorname{deg}(u)=4$ then $N(u)$ is isomorphic to K_{4}.
Now suppose that $\operatorname{deg}(u)=5$. Since each edge $u v$ with $v \in N(u)$ belongs to at least 3 triangles, then for every $v \in N(u), \operatorname{deg}(v) \geq 3$ in $N(u)$.

Hence $|e(N(u))| \geq\lceil(3 \cdot 5) / 2\rceil=8$. But $N(u)$ is K_{4}-minor free and so

Proof for $d=3,4,5$

- For $d=5$, by Mader's theorem, $|E| \leq 3 n-6$, so there is a vertex u such that $\operatorname{deg}(u) \leq 5$.

If $\operatorname{deg}(u)=4$ then $N(u)$ is isomorphic to K_{4}.
Now suppose that $\operatorname{deg}(u)=5$. Since each edge $u v$ with $v \in N(u)$ belongs to at least 3 triangles, then for every $v \in N(u), \operatorname{deg}(v) \geq 3$ in $N(u)$.

Hence $|e(N(u))| \geq\lceil(3 \cdot 5) / 2\rceil=8$. But $N(u)$ is K_{4}-minor free and so $|e(N(u))| \leq 2 \cdot 5-3=7$.

Proof of the rigidity theorem

Theorem (Whiteley, 1989)
Let G^{\prime} be obtained from a graph G by contracting an edge $u v$. If u and v have at most $d-1$ common neighbours and G^{\prime} is generically d-stress free, then G is generically d-stress free.

Suppose that G is K_{d+2}-minor free for $3 \leq d \leq 6$.
Contract edges that belong to at most d triangles as long as it is possible and denote G^{\prime} the graph obtained. By the previous theorem, G is d-stress free if G^{\prime} is d-stress free.

If G^{\prime} has no edge then it is trivially d-stress free.
Otherwise every edge belongs to at least d triangles and by the previous theorem G contains a K_{d+2}-minor, a contradiction.

Proof of the rigidity theorem

Theorem (Whiteley, 1989)

Let G^{\prime} be obtained from a graph G by contracting an edge $u v$. If u and v have at most $d-1$ common neighbours and G^{\prime} is generically d-stress free, then G is generically d-stress free.

Suppose that G is K_{d+2}-minor free for $3 \leq d \leq 6$.

Contract edges that belong to at most d triangles as long as it is possible and denote G^{\prime} the graph obtained. By the previous theorem, G is d-stress free if G^{\prime} is d-stress free.

If G^{\prime} has no edge then it is trivially d-stress free.

Otherwise every edge belongs to at least d triangles and by the previous theorem G contains a K_{d+2}-minor, a contradiction.

Proof of the rigidity theorem

Theorem (Whiteley, 1989)
Let G^{\prime} be obtained from a graph G by contracting an edge $u v$. If u and v have at most $d-1$ common neighbours and G^{\prime} is generically d-stress free, then G is generically d-stress free.

Suppose that G is K_{d+2}-minor free for $3 \leq d \leq 6$.

Contract edges that belong to at most d triangles as long as it is possible and denote G^{\prime} the graph obtained. By the previous theorem, G is d-stress free if G^{\prime} is d-stress free.

If G^{\prime} has no edge then it is trivially d-stress free.

Otherwise every edge belongs to at least d triangles and by the previous theorem G contains a K_{d+2}-minor a contradiction

Proof of the rigidity theorem

Theorem (Whiteley, 1989)
Let G^{\prime} be obtained from a graph G by contracting an edge $u v$. If u and v have at most $d-1$ common neighbours and G^{\prime} is generically d-stress free, then G is generically d-stress free.

Suppose that G is K_{d+2}-minor free for $3 \leq d \leq 6$.

Contract edges that belong to at most d triangles as long as it is possible and denote G^{\prime} the graph obtained. By the previous theorem, G is d-stress free if G^{\prime} is d-stress free.

If G^{\prime} has no edge then it is trivially d-stress free.

Otherwise every edge belongs to at least d triangles and by the previous theorem G contains a K_{d+2}-minor, a contradiction.

Proof of the rigidity theorem

Theorem (Whiteley, 1989)
Let G^{\prime} be obtained from a graph G by contracting an edge $u v$. If u and v have at most $d-1$ common neighbours and G^{\prime} is generically d-stress free, then G is generically d-stress free.

Suppose that G is K_{d+2}-minor free for $3 \leq d \leq 6$.

Contract edges that belong to at most d triangles as long as it is possible and denote G^{\prime} the graph obtained. By the previous theorem, G is d-stress free if G^{\prime} is d-stress free.

If G^{\prime} has no edge then it is trivially d-stress free.

Otherwise every edge belongs to at least d triangles and by the previous theorem G contains a K_{d+2}-minor, a contradiction.

The case of 4 triangles

Theorem (A. \& Gonçalves, 2012)
If G is a K_{6} minor-free graph then G has a vertex u and an edge uv such that $\operatorname{deg}(u) \leq 7$ and uv belongs to at most 3 triangles.

If each edge of G belongs to at least 4 triangles then G contains a K_{6}

 minor.
The case of 4 triangles

Theorem (A. \& Gonçalves, 2012)
If G is a K_{6} minor-free graph then G has a vertex u and an edge uv such that $\operatorname{deg}(u) \leq 7$ and uv belongs to at most 3 triangles.

Corollary
If each edge of G belongs to at least 4 triangles then G contains a K_{6} minor.

Proof

By Mader's theorem $|E| \leq 4 n-10$, so there is a vertex u such that $\operatorname{deg}(u) \leq 7$.

If $\operatorname{deg}(u) \leq 4$, we have a contradiction, each edge $u v$ with $v \in N(u)$ can't belong to 4 triangles.

If $\operatorname{deg}(u)=5$, since each edge $u v$ with $v \in N(u)$ belongs to 4 triangles then $N(u)$ is isomorphic to K_{5}, a contradiction.

Proof

By Mader's theorem $|E| \leq 4 n-10$, so there is a vertex u such that $\operatorname{deg}(u) \leq 7$.

If $\operatorname{deg}(u) \leq 4$, we have a contradiction, each edge $u v$ with $v \in N(u)$ can't belong to 4 triangles.

If $\operatorname{deg}(u)=5$, since each edge $u v$ with $v \in N(u)$ belongs to 4 triangles then $N(u)$ is isomorphic to K_{5}, a contradiction.

Proof

By Mader's theorem $|E| \leq 4 n-10$, so there is a vertex u such that $\operatorname{deg}(u) \leq 7$.

If $\operatorname{deg}(u) \leq 4$, we have a contradiction, each edge $u v$ with $v \in N(u)$ can't belong to 4 triangles.

If $\operatorname{deg}(u)=5$, since each edge $u v$ with $v \in N(u)$ belongs to 4 triangles then $N(u)$ is isomorphic to K_{5}, a contradiction.

Proof

By Mader's theorem $|E| \leq 4 n-10$, so there is a vertex u such that $\operatorname{deg}(u) \leq 7$.

If $\operatorname{deg}(u) \leq 4$, we have a contradiction, each edge $u v$ with $v \in N(u)$ can't belong to 4 triangles.

If $\operatorname{deg}(u)=5$, since each edge $u v$ with $v \in N(u)$ belongs to 4 triangles then $N(u)$ is isomorphic to K_{5}, a contradiction.

Lemma
$N(u)$ is planar and 4-connected.

Proof

Theorem (Chen \& Kanevsky, 1993)
Every 4-connected graph can be assembled from either the complete graph K_{5} or the double-axle wheel W_{4}^{2} on four vertices using operations involving only vertex splitting and edge addition.

Proof

Theorem (Chen \& Kanevsky, 1993)
Every 4-connected graph can be assembled from either the complete graph K_{5} or the double-axle wheel W_{4}^{2} on four vertices using operations involving only vertex splitting and edge addition.

Figure: Double-axle wheel on 4 and 5 vertices

Proof

- We assume that (A, B) is a (≤ 3)-separation of G such that $A \cap B$ is a clique and B is minimal for this property and $u \in A$.
- We can find a vertex u^{\prime} of small degree in $B \backslash(A \cap B)$.
- $N\left(u^{\prime}\right)$ is isomorphic to one of the two double-axle wheels.
- We can find a (≤ 3)-separation $\left(A^{\prime}, B^{\prime}\right)$ with $B^{\prime} \subsetneq B$ where $A^{\prime} \cap B^{\prime}$ is a clique and $\left\{u, u^{\prime}\right\} \in A^{\prime}$, contradicting the minimality of B.

Proof

- We assume that (A, B) is a (≤ 3)-separation of G such that $A \cap B$ is a clique and B is minimal for this property and $u \in A$.
- We can find a vertex u^{\prime} of small degree in $B \backslash(A \cap B)$.
- $N\left(u^{\prime}\right)$ is isomorphic to one of the two double-axle wheels.
- We can find a (≤ 3)-separation $\left(A^{\prime}, B^{\prime}\right)$ with $B^{\prime} \subsetneq B$ where $A^{\prime} \cap B^{\prime}$ is a clique and $\left\{u, u^{\prime}\right\} \in A^{\prime}$, contradicting the minimality of B.

Proof

- We assume that (A, B) is a (≤ 3)-separation of G such that $A \cap B$ is a clique and B is minimal for this property and $u \in A$.
- We can find a vertex u^{\prime} of small degree in $B \backslash(A \cap B)$.
- $N\left(u^{\prime}\right)$ is isomorphic to one of the two double-axle wheels.
- We can find a (≤ 3)-separation $\left(A^{\prime}, B^{\prime}\right)$ with $B^{\prime} \subsetneq B$ where $A^{\prime} \cap B^{\prime}$ is a clique and $\left\{u, u^{\prime}\right\} \in A^{\prime}$, contradicting the minimality of B.

Proof

- We assume that (A, B) is a (≤ 3)-separation of G such that $A \cap B$ is a clique and B is minimal for this property and $u \in A$.
- We can find a vertex u^{\prime} of small degree in $B \backslash(A \cap B)$.
- $N\left(u^{\prime}\right)$ is isomorphic to one of the two double-axle wheels.
- We can find a (≤ 3)-separation $\left(A^{\prime}, B^{\prime}\right)$ with $B^{\prime} \subsetneq B$ where $A^{\prime} \cap B^{\prime}$ is a clique and $\left\{u, u^{\prime}\right\} \in A^{\prime}$, contradicting the minimality of B.

The case of 5 triangles

Theorem (A. \& Gonçalves, 2012)
If G is a K_{7} minor-free graph then G has a vertex u and an edge uv such that $\operatorname{deg}(u) \leq 7$ and uv belongs to at most 4 triangles.

If each edge of G belongs to at least 5 triangles then G contains a K_{7}

 minor.
The case of 5 triangles

Theorem (A. \& Gonçalves, 2012)
If G is a K_{7} minor-free graph then G has a vertex u and an edge uv such that $\operatorname{deg}(u) \leq 7$ and uv belongs to at most 4 triangles.

Corollary
If each edge of G belongs to at least 5 triangles then G contains a K_{7} minor.

Proof

G is K_{7}-minor free, so by Mader's theorem $|E| \leq 5 n-15$ and there is a vertex u of degree at most 9 .

Lemma
$N(u)$ is linkless and 5-connected.

We use a computer to generate all 5-connected K_{6}-minor free graphs with at most 9 vertices. We ended up with 22 possible graphs for $N(u)$.

Proof

G is K_{7}-minor free, so by Mader's theorem $|E| \leq 5 n-15$ and there is a vertex u of degree at most 9 .

Lemma
$N(u)$ is linkless and 5-connected.

We use a computer to generate all 5 -connected K_{6}-minor free graphs with at most 9 vertices. We ended up with 22 possible graphs for $N(u)$.

Proof

G is K_{7}-minor free, so by Mader's theorem $|E| \leq 5 n-15$ and there is a vertex u of degree at most 9 .

Lemma
$N(u)$ is linkless and 5-connected.

We use a computer to generate all 5-connected K_{6}-minor free graphs with at most 9 vertices. We ended up with 22 possible graphs for $N(u)$.

The case of 6 triangles

Definition

Let G a graph. $A(G, k)$-cockade is a graph constructed recursively as follows:

- G is a (G, k)-cockade.
- If G_{1} and G_{2} are (G, k)-cockades and H_{1} and H_{2} are cliques of size k in respectively G_{1} and G_{2}, then the graph obtained by taking the disjoint union of G_{1} and G_{2} and identifying H_{1} with H_{2} is a (G, k)-cockade.
 K_{8}-minor, or is a $\left(K_{2,2,2,2,2}, 5\right)$-cockade.

The case of 6 triangles

Definition

Let G a graph. $A(G, k)$-cockade is a graph constructed recursively as follows:

- G is a (G, k)-cockade.
- If G_{1} and G_{2} are (G, k)-cockades and H_{1} and H_{2} are cliques of size k in respectively G_{1} and G_{2}, then the graph obtained by taking the disjoint union of G_{1} and G_{2} and identifying H_{1} with H_{2} is a (G, k)-cockade.

Theorem (Jørgensen, 1994)
Every graph on $n \geq 8$ vertices and at least $6 n-20$ edges either has a K_{8}-minor, or is a $\left(K_{2,2,2,2,2}, 5\right)$-cockade.

Proof

Theorem (A. \& Gonçalves, 2012)
If each edge of G belongs to at least 6 triangles then G contains a K_{8} minor or is a $\left(K_{2,2,2,2,2}, 5\right)$-cockade.

The idea is the same. We can still find a vertex u of degree at most 11 but some differences occur compared to the previous cases

- $N(u)$ is not 6-connected! Some graphs are just 5-connected.
- If we assume that only edges incident to vertices of small degree belong to 6 triangles then some counting arguments fail. This can be fixed by relaxing the assumptions and assuming that all edges belong to 6 triangles.

Proof

Theorem (A. \& Gonçalves, 2012)
If each edge of G belongs to at least 6 triangles then G contains a K_{8} minor or is a $\left(K_{2,2,2,2,2}, 5\right)$-cockade.

The idea is the same. We can still find a vertex u of degree at most 11 but some differences occur compared to the previous cases :

- $N(u)$ is not 6-connected! Some graphs are just 5-connected.
- If we assume that only edges incident to vertices of small degree
belong to 6 triangles then some counting arguments fail. This can be
fixed by relaxing the assumptions and assuming that all edges belong
to 6 triangles.

Proof

Theorem (A. \& Gonçalves, 2012)
If each edge of G belongs to at least 6 triangles then G contains a K_{8} minor or is a ($K_{2,2,2,2,2}, 5$)-cockade.

The idea is the same. We can still find a vertex u of degree at most 11 but some differences occur compared to the previous cases :

- $N(u)$ is not 6 -connected! Some graphs are just 5-connected.
- If we assume that only edges incident to vertices of small degree belong to 6 triangles then some counting arguments fail. This can be fixed by relaxing the assumptions and assuming that all edges belong to 6 triangles.

Back to rigidity

Theorem (A. \& Gonçalves, 2012)
Every K_{7}-minor free graph is generically 5-stress free.
Every K_{8}-minor free graph is generically 6 -stress free or is a ($K_{2,2,2,2,2}, 5$)-cockade.

Conjectures and Open Problems

Theorem (Song \& Thomas, 2005)
Every graph on $n \geq 9$ vertices and at least $7 n-27$ edges either has a K_{8}-minor, or is a $\left(K_{2,2,2,2,2,1}, 6\right)$-cockade, or is isomorphic to $K_{2,2,2,3,3}$.

Every K_{9}-minor free graph is generically 7-stress free or is a ($K_{2.2 .2 .2 .2,1}, 6$)-cockade, or is isomorphic to $K_{2.2 .2 .3 .3}$.

Conjectures and Open Problems

Theorem (Song \& Thomas, 2005)
Every graph on $n \geq 9$ vertices and at least $7 n-27$ edges either has a K_{8}-minor, or is a $\left(K_{2,2,2,2,2,1}, 6\right)$-cockade, or is isomorphic to $K_{2,2,2,3,3}$.

Conjecture

Every K_{9}-minor free graph is generically 7 -stress free or is a $\left(K_{2,2,2,2,2,1}, 6\right)$-cockade, or is isomorphic to $K_{2,2,2,3,3}$.

Conjectures and Open Problems (2)

- Can we prove smaller degeneracy for $K_{\leq 9}$-minor free graphs?

Conjecture
Every K_{6}-minor free graph is 6-degenerate.

- Can the problem be generalized to matroids? A triangle is circuit of size 3. What if each element of the matroid belongs to k triangles?

Conjectures and Open Problems (2)

- Can we prove smaller degeneracy for $K_{\leq 9}$-minor free graphs?

Conjecture
Every K_{6}-minor free graph is 6-degenerate.
> - Can the problem be generalized to matroids? A triangle is circuit of size 3. What if each element of the matroid belongs to k triangles?

Conjectures and Open Problems (2)

- Can we prove smaller degeneracy for $K_{\leq 9}$-minor free graphs?

Conjecture
Every K_{6}-minor free graph is 6-degenerate.

- Can the problem be generalized to matroids? A triangle is circuit of size 3. What if each element of the matroid belongs to k triangles?

Thank you!

