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Rigidity

Tensegrity

A Tensegrity structure is a physical system consisting of a finite number of
inextendable cables and incompressible bars linked together by their
extremities.

Which of these structures are ”stable” ?
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Rigidity

Stress

Given a embedding ρ : V 7−→ Rd of a graph G = (V ,E ). A stress on ρ
is a function ω : V × V → R such that for all u ∈ V :∑

{u,v}∈E

ω({u, v})(ρ(v)− ρ(u)) = 0.

Definition

Let G = (V ,E ) a graph. An embedding ρ : V 7−→ Rd of G is d-stress
free if every stress is trivial (ω = 0).

Definition

G is generically d-stress free if the set of all d-stress free embeddings of G
is open and dense in the set of all embeddings of G (' Rdn).
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Rigidity

Example: A non-trivial 2-stress on K4
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Rigidity

History

Theorem (Cauchy, 1813)

Every convex polyhedron is 3-stress free.

Theorem (Maxwell, 1864)

Every polyhedron admits a non-trivial 2-stress.

Corollary

Every 3-connected planar graph admits a non-trivial 2-stress.
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Rigidity

Example: A non-trivial 3-stress on a non-convex
polyhedron
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Rigidity

History (2)

Theorem (Gluck, 1974)

Almost all polyhedra are 3-stress free.

Corollary

Planar graphs are generically 3-stress free.
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Minors

Rigidity and Minors of Graphs

Theorem (Nevo, 2007)

For 3 ≤ r ≤ 6, every Kr -minor free graph is generically r − 2-stress free.

Theorem (Nevo, 2007)

For 3 ≤ d ≤ 5, if each edge of G belongs to at least d − 2 triangles then
G contains a Kd minor.
If each edge of G belongs to at least 4 triangles then G contains a K6

minor or is a clique-sum over Kl , l ≤ 4.
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Minors

Proof for d = 3, 4, 5

We will use extensively the following theorem of Mader.

Theorem (Mader, 1968)

For 1 ≤ r ≤ 7, every Kr minor-free graph has at most (r − 2)n −
(r−1

2

)
edges.

For d = 3, each edge belongs to at least one triangle and trivially
contains a K3 minor.

For d = 4, by Mader’s theorem, |E | ≤ 2n − 3, so there is a vertex u
such that deg(u) ≤ 3. And since each edge belongs to at least 2
triangles, N(u) is isomorphic to K3.
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Minors

Proof for d = 3, 4, 5

For d = 5, by Mader’s theorem, |E | ≤ 3n − 6, so there is a vertex u
such that deg(u) ≤ 5.

If deg(u) = 4 then N(u) is isomorphic to K4.

Now suppose that deg(u) = 5. Since each edge uv with v ∈ N(u)
belongs to at least 3 triangles, then for every v ∈ N(u), deg(v) ≥ 3 in
N(u).

Hence |e(N(u))| ≥ d(3 · 5)/2e = 8. But N(u) is K4-minor free and so
|e(N(u))| ≤ 2 · 5− 3 = 7.
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Minors

Proof of the rigidity theorem

Theorem (Whiteley, 1989)

Let G ′ be obtained from a graph G by contracting an edge uv. If u and v
have at most d − 1 common neighbours and G ′ is generically d-stress free,
then G is generically d-stress free.

Suppose that G is Kd+2-minor free for 3 ≤ d ≤ 6.

Contract edges that belong to at most d triangles as long as it is possible
and denote G ′ the graph obtained. By the previous theorem, G is d-stress
free if G ′ is d-stress free.

If G ′ has no edge then it is trivially d-stress free.

Otherwise every edge belongs to at least d triangles and by the previous
theorem G contains a Kd+2-minor, a contradiction.
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4 Triangles

The case of 4 triangles

Theorem (A. & Gonçalves, 2012)

If G is a K6 minor-free graph then G has a vertex u and an edge uv such
that deg(u) ≤ 7 and uv belongs to at most 3 triangles.

Corollary

If each edge of G belongs to at least 4 triangles then G contains a K6

minor.
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4 Triangles

Proof

By Mader’s theorem |E | ≤ 4n − 10, so there is a vertex u such that
deg(u) ≤ 7.

If deg(u) ≤ 4, we have a contradiction, each edge uv with v ∈ N(u) can’t
belong to 4 triangles.

If deg(u) = 5, since each edge uv with v ∈ N(u) belongs to 4 triangles
then N(u) is isomorphic to K5, a contradiction.

Lemma

N(u) is planar and 4-connected.
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4 Triangles

Proof

Theorem (Chen & Kanevsky, 1993)

Every 4-connected graph can be assembled from either the complete graph
K5 or the double-axle wheel W 2

4 on four vertices using operations involving
only vertex splitting and edge addition.

Figure: Double-axle wheel on 4 and 5 vertices
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4 Triangles

Proof

We assume that (A,B) is a (≤ 3)-separation of G such that A ∩ B is
a clique and B is minimal for this property and u ∈ A.

We can find a vertex u′ of small degree in B\(A ∩ B).

N(u′) is isomorphic to one of the two double-axle wheels.

We can find a (≤ 3)-separation (A′,B ′) with B ′ ( B where A′ ∩ B ′ is
a clique and {u, u′} ∈ A′, contradicting the minimality of B.
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5 Triangles

The case of 5 triangles

Theorem (A. & Gonçalves, 2012)

If G is a K7 minor-free graph then G has a vertex u and an edge uv such
that deg(u) ≤ 7 and uv belongs to at most 4 triangles.

Corollary

If each edge of G belongs to at least 5 triangles then G contains a K7

minor.

Rigidity, Triangles and Minors



5 Triangles

The case of 5 triangles

Theorem (A. & Gonçalves, 2012)
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5 Triangles

Proof

G is K7-minor free, so by Mader’s theorem |E | ≤ 5n − 15 and there is a
vertex u of degree at most 9.

Lemma

N(u) is linkless and 5-connected.

We use a computer to generate all 5-connected K6-minor free graphs with
at most 9 vertices. We ended up with 22 possible graphs for N(u).
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6 Triangles

The case of 6 triangles

Definition

Let G a graph. A (G , k)-cockade is a graph constructed recursively as
follows:

G is a (G , k)-cockade.

If G1 and G2 are (G , k)-cockades and H1 and H2 are cliques of size k
in respectively G1 and G2, then the graph obtained by taking the
disjoint union of G1 and G2 and identifying H1 with H2 is a
(G , k)-cockade.

Theorem (Jørgensen, 1994)

Every graph on n ≥ 8 vertices and at least 6n − 20 edges either has a
K8-minor, or is a (K2,2,2,2,2, 5)-cockade.
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6 Triangles

Proof

Theorem (A. & Gonçalves, 2012)

If each edge of G belongs to at least 6 triangles then G contains a K8

minor or is a (K2,2,2,2,2, 5)-cockade.

The idea is the same. We can still find a vertex u of degree at most 11 but
some differences occur compared to the previous cases :

N(u) is not 6-connected! Some graphs are just 5-connected.

If we assume that only edges incident to vertices of small degree
belong to 6 triangles then some counting arguments fail. This can be
fixed by relaxing the assumptions and assuming that all edges belong
to 6 triangles.
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Rigidity again

Back to rigidity

Theorem (A. & Gonçalves, 2012)

Every K7-minor free graph is generically 5-stress free.
Every K8-minor free graph is generically 6-stress free or is a
(K2,2,2,2,2, 5)-cockade.
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Open problems

Conjectures and Open Problems

Theorem (Song & Thomas, 2005)

Every graph on n ≥ 9 vertices and at least 7n − 27 edges either has a
K8-minor, or is a (K2,2,2,2,2,1, 6)-cockade, or is isomorphic to K2,2,2,3,3.

Conjecture

Every K9-minor free graph is generically 7-stress free or is a
(K2,2,2,2,2,1, 6)-cockade, or is isomorphic to K2,2,2,3,3.
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Open problems

Conjectures and Open Problems (2)

- Can we prove smaller degeneracy for K≤9-minor free graphs?

Conjecture

Every K6-minor free graph is 6-degenerate.

- Can the problem be generalized to matroids? A triangle is circuit of size
3. What if each element of the matroid belongs to k triangles?
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Thanks

Thank you!
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