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Well Quasi Ordering Theory

Let X be a set and let “≤” be a partial ordering relation on X .

Antichain: an infinite sequence on non- ≤-comparable elements.

We say that X is Well-Quasi-Ordered by ≤ if it has no infinite

antichain

Examples:

I 2N is not W.Q.O. by set inclusion.

I N is not W.Q.O. by divisibility.

I Nk is W.Q.O. by by component-wise ordering.
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Well Quasi Ordering Theory

General question: Given a set X and an ordering relation ≤ on it,

is X W.Q.O. by to ≤?

The theory of Well-quasi-ordering was first developed by

Graham Higman and Erdős & Rado

under the name “finite basis property”

Remind: This talk is about graphs and algorithms!
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The minor relation on Graphs

Graph Minors

We define 3 local operations on graphs:

1 \v: vertex removal:

v

2 \e: edge removal:

e

3 /e: edge contraction

e

Minor Relation:

H ≤ G if H can be obtained from G after a sequence of the above operations
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Wagner’s Conjecture

Wagner’s Conjecture:

I The set of all graphs is W.Q.O. by the minor relation

[formulated by Klaus Wagner in the 1930s (?)]
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The Graph Minors Series

This conjecture was proven by Neil Robertson and Paul Seymour in their

Graph Minor series of papers.

Now it is known as the Robertson & Seymour Theorem.

Width of the proof: < 10 cm (23 papers)

10/11 Fulkerson Prize (2006) (2/3 for N.R. & 4/5 for P.S.)
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The Graph Minors Series

In this talk we will present (

some of

) the algorithmic

applications of the Graph Minors Series.
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Parameterized complexity

We say that a parameterized (by k) problem belongs in the

parameterized complexity class FPT if it can be solved by an

FPT-algorithm, that is an algorithm that runs in

O(f(k) · nO(1)) steps

(n is the size of the input, f depends only one the parameter k.)

I Not all parameterized problems admit FPT-algorithms.

There are parameterized complexity classes like W[1], W[2], or W[P] and

adequate reductions such that when a problem is hard for them is not

expected to have an FPT-algorithm.
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Parameters on graphs

graph parameter: a function p that maps graphs to integers.

A meta-problem:

k-Parameter p-Checking

Instance: a graph G and an integer k ≥ 0.

Parameter: k

Question: p(G)≤ k?

p can be the minimum Vertex Cover, Dominating Set, Edge Dominating

Set, Chromatic Number, Feedback Vertex Set, e.t.c.

I Holy grail (meta)-question

For which functions p it holds that k-Parameter p-Checking∈FPT?

(i.e., there is an f(k)·nO(1)-step algorithm checking whether p(G) ≤ k?)
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Parameters on graphs

A parameter p is minor closed if H ≤ G⇒ p(H) ≤p(G).

Minor-closed parameters:

I vertex cover, vc(G)

I feedback vertex set, fvs(G)

I branchwidth/treewidth/pathwidth/tree-depth,

bw(G)/tw(G)/pw(G)/td(G)

I minimum maximal matching, mmm(G)

I p(G) = |V (G)| − α(G) (α(G) is the max independent set size)

I the genus of a graph, γ(G)

I the apex number of a graph, apx(G)

I p(G) = min{k | Pk 6≤ G} (Longest Path)
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The meta-algorithmic consequence of GMT

Main meta-algorithmic consequence of GMT:

I If p is minor closed then k-Parameter p-Checking ∈FPT.

In other words,

I p(G) ≤ k can be checked in f(k) · n3 steps.

I Every minor-closed graph class G can be recognized in O(n3).

[Take p(G) = 0 if G ∈ G and p(G) = 1, otherwise]
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The meta-algorithmic consequence of GMT

Questions on the last two versions of the meta-algorithmic result:

I p(G) ≤ k can be checked in f(k) · n3 steps.

What is f?

I Every minor-closed graph class G can be recognized in O(n3).

What is hidden in the O-notation?

A-question: Is there any practical algorithm here?

... go back to the proofs!
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Meta-algorithms from Graph Minors

I For any minor closed parameter p and any k, we define obk(p) as the

set of minor-minimal elements in

{G | p(G) > k}

I we call obk(p) obstruction family of p.

I Observe: p(G) ≤ k ⇔ ∀H∈obk(p) H 6≤ G

I Observe: obk(p) is an antichain.

I GMT Consequence: obk(p) is finite!
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The meta-algorithm

An algorithm for the k-Parameter p-Checking problem

1. for all H ∈ obk(p)

2. check (in O(g(k) · n3) steps) whether H ≤mn G

3. and if this holds, then output NO

4. output YES.

The meta-problem is reduced to the k-Minor Containment problem.

k-Minor Containment problem can be solved in O(g(k) · n3) steps

The whole algorithm takes O(|obk(p)| · g(k) · n3) steps.

Good news: g(k) is constructible!

A-news: g(k) is huge!

Dimitrios M. Thilikos Department of Mathematics, UoA

Algorithmic Graph Minors: turning Combinatorics to Algorithms Page 46/111 14



Graph Minors and algorithms The irrelevant vertex technique

The meta-algorithm

An algorithm for the k-Parameter p-Checking problem

1. for all H ∈ obk(p)

2. check (in O(g(k) · n3) steps) whether H ≤mn G

3. and if this holds, then output NO

4. output YES.

The meta-problem is reduced to the k-Minor Containment problem.

k-Minor Containment problem can be solved in O(g(k) · n3) steps

The whole algorithm takes O(|obk(p)| · g(k) · n3) steps.

Good news: g(k) is constructible!

A-news: g(k) is huge!

Dimitrios M. Thilikos Department of Mathematics, UoA

Algorithmic Graph Minors: turning Combinatorics to Algorithms Page 47/111 14



Graph Minors and algorithms The irrelevant vertex technique

The meta-algorithm

An algorithm for the k-Parameter p-Checking problem

1. for all H ∈ obk(p)

2. check (in O(g(k) · n3) steps) whether H ≤mn G

3. and if this holds, then output NO

4. output YES.

The meta-problem is reduced to the k-Minor Containment problem.

k-Minor Containment problem can be solved in O(g(k) · n3) steps

The whole algorithm takes O(|obk(p)| · g(k) · n3) steps.

Good news: g(k) is constructible!

A-news: g(k) is huge!

Dimitrios M. Thilikos Department of Mathematics, UoA

Algorithmic Graph Minors: turning Combinatorics to Algorithms Page 48/111 14



Graph Minors and algorithms The irrelevant vertex technique

The meta-algorithm

An algorithm for the k-Parameter p-Checking problem

1. for all H ∈ obk(p)

2. check (in O(g(k) · n3) steps) whether H ≤mn G

3. and if this holds, then output NO

4. output YES.

The meta-problem is reduced to the k-Minor Containment problem.

k-Minor Containment problem can be solved in O(g(k) · n3) steps

The whole algorithm takes O(|obk(p)| · g(k) · n3) steps.

Good news: g(k) is constructible!

A-news: g(k) is huge!
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The meta-algorithm

AA-facts on the main meta-algorithmic result of GMT.

1. the above algorithm “exists” but cannot be constructed as we

do not know obk(p)

I There is no TM that, given a machine description of p, can

produce obk(p). [Fellows & Langston, JCSS 1994]

2. we know obk(p) for few parameters and for small values of k

3. when we have upper bounds for |obk(p)|, they are immense.
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Two problems

Robertson & Seymour, proved the following:

Theorem (GM-VI, GM-VII, GM-XIII, GM-XXI, GM-XII)

The following two problems can be solved in O(g(k) · n3) steps:

k-Minor Containment

Instance: two graphs G and H.

Parameter: k = |V (H)|

Question: H ≤ G?

k-Disjoint Paths

Instance: A graph G and a sequence of pairs of terminals

T = (s1, t1), . . . , (sk, tk) ∈ (V (G)× V (G))k.

Parameter: k.

Question: Are there k pairwise vertex disjoint paths P1, . . . , Pk in G such that

for every i ∈ {1, . . . , k}, Pi has endpoints si and ti?
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Two problems

Both k-Minor Containment and k-Disjoint Paths

Problem where solved using the

The irrelevant vertex Technique

introduced in [GM XIII]
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Two problems

Given an instance (G,T, k) of the k-Disjoint Paths problem,

a vertex v ∈ V (G) is an irrelevant vertex of G if

(G,T, k) and (G \ v, T, k) are equivalent instances of the problem.

Idea: I Find irrelevant vertex and recurse!

We give a outline of the idea for the case of k-Disjoint Paths.
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The general scheme

The general scheme of the algorithm in [GM XIII] is the following:

Input: An instance (G,T, k) of k-Disjoint Paths

Output: An equivalent instance (G,T, k) k-Disjoint Paths

1. while G 6∈ Gk,

2. find an irrelevant vertex v in G

3. set G← G \ v

4. output (G,T, k)

Here Gk represents some structural condition for the problem input.
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The general scheme

The algorithmic scheme depends on the parameterized class Gk and

creates an equivalent instance that belongs in Gk.

I It is applied first for

Gk = {G | G is a Kh(k)-minor free graph}

and then for

Gk = {G | G is a Γj(k)-minor free graph},

for some suitable choice of recursive functions h, j : N→ N.

I Γr is the (r × r)-grid.
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The general scheme

Phase 1: What to do with a ”big” clique minor?

(technical) details omitted...
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The general scheme

Assume now that the input graph excludes the clique Kh(k) as a minor.

Combinatorial question: How such graphs look like?

Two answers:

I Weak Structure Theorem [GM XIII]

I Strong Structure Theorem [GM XVI]
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Weak structure theorem

Theorem (Weak Structure Theorem)

There exists recursive functions g1 : N× N→ N and g2 : N→ N, such

that for every graph G and every r, q ∈ N, one of the following holds:

1 Kr is a minor of G,

(This is now excluded for r = h(k))

2 Γg1(r,q) is not a minor of G,

(This is what we want to achieve!)

3 ∃X ⊆ V (G) with |X| ≤ g2(r) such that G \X contains as a

subgraph a flat subdivided wall W where W has height q

and the compass of W has a rural division D such that each internal

flap of D has treewidth at most g1(r, q).(irrelevant vertex wanted...)
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Weak structure theorem

A subdivided Wall W of heigh 5:

Dimitrios M. Thilikos Department of Mathematics, UoA

Algorithmic Graph Minors: turning Combinatorics to Algorithms Page 77/111 24



Graph Minors and algorithms The irrelevant vertex technique

Weak structure theorem

G \X
X

The compass is the part of the G \X that is “inside” the perimeter of the

subdivided wall W . The perimeter is as a separator between the internal

compass vertices and the part of G \X that is outside the perimeter
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Weak structure theorem

G \X
X

The compass can be decomposed to graphs of bounded treewidth (flaps) whose

“roots” have size ≤ 3 and form a planar hypergraph inside the disk bounded by

the perimeter
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Weak structure theorem

Weak structure theorem −→ sunny forest theorem!
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Weak structure theorem

We examine only the simpler case where X = ∅.

[the forest is dark!]
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Linkages

A solution to the k-Disjoint Paths Problem, for k = 12

Dimitrios M. Thilikos Department of Mathematics, UoA

Algorithmic Graph Minors: turning Combinatorics to Algorithms Page 82/111 29



Graph Minors and algorithms The irrelevant vertex technique

Linkages

The middle vertex of the subdivided wall W
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Linkages

A way to avoid the middle vertex
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Linkages

Is it always possible to avoid the middle vertex?
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Linkages

The answer is YES given that the height of W is at least λ(k)!
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Linkages

Therefore, if the height of W is ”big enough”, then we can safely

detect an irrelevant vertex (and remove it)!
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Linkages

Theorem (Weak Structure Theorem)

There exists recursive functions g1 : N× N→ N and g2 : N→ N, such that for every

graph G and every r, q ∈ N, one of the following holds:

1 Kr is a minor of G, (This is now excluded for r = h(k))

2 Γg1(r,q) is not a minor of G, (This is what we want to achieve!)

3 ∃X ⊆ V (G) with |X| ≤ g2(r) such that G \X contains as a

subgraph a flat subdivided wall W where W has height q

z and the compass of W has a rural division D such that each internal flap of D

has treewidth at most g1(r, q). (irrelevant vertex wanted...)

I After the second phase, we have an equivalent instance satisfying cond. 2 .

I This means that G has treewidth bounded by some function of k: the

problem can be solved using dynamic programming.
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Linkages

We can reroute the k disjoint path, given that the height of W is at least λ(k)!

I Proved in [GM XXI].

I The proof uses the ”Vital Linkage Lemma” (proved in [GM XXI]) and

the ”Strong Structural Theorem of GMT” (proved in [GM XVI])

A What is the estimation of λ(k)? Huge!
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Parameteric dependance

David Johnson mentioned in his ongoing guide on NP-completeness:

“for any instance G = (V,E) that one could fit into the known universe,

one would easily prefer |V |70 to even constant time, if that constant had

to be one of Robertson and Seymour’s”.

David Johnson also estimated that just one constant in the parametric

dependence of the strong structural Theorem to be roughly

2↑2
222↑2↑Θ(r)

where 2↑r denotes a tower 222
. .

.

involving r 2’s.
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Parameteric dependance

Improvements!

Target 1: Prove that we can reroute the k disjoint paths without using

the ”Strong Structural Theorem of GMT”.

Achieved! By [Ken-ichi Kawarabayashi, Paul Wollan]: A shorter proof of

the graph minor algorithm: the unique linkage theorem. STOC 2010

Target 2: Find an alternative proof of the ”Strong Structural Theorem of

GMT” that has ”better constants”.

Achieved! By [Ken-ichi Kawarabayashi, Paul Wollan: A simpler algorithm

and shorter proof for the graph minor decomposition. STOC 2011]

On going work by: [ Reed, Li, Ken-ichi Kawarabayashi]: On going work

(proof: ∼ 100 pages)
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Parameteric dependance

Fact: [Ken-ichi Kawarabayashi, Paul Wollan, STOC 2010]: Gives an

estimation of λ(k) = 222k

in general gaphs!

This, still, gives an algorithm of 2222Ω(k)

steps

for the k-Disjoint Paths Problem
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Parameteric dependance

Can we make things better?

Planar graphs: By [Adler, Kolliopoulos, Krause, Lokshtanov, Saurabh,

Thilikos: Tight Bounds for Linkages in Planar Graphs. ICALP 2011]

it follows that λ(k) = 2O(k).

This gives an 22Ω(k) · n3 algorithm for the k-Disjoint Paths Problem

A-Limits of the irrelevant vertex technique:

22O(k) · n3 steps is optimal as λ(k) = 2Ω(k)

I A non-A algorithm for the k-Disjoint Paths Problem (and

related problems) would require radically different techniques!
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Some problems

Last words on Algorithmic Graph Minors Theory...

Some recent FPT-Algorithms using the irrelevant vertex technique or variants of it:

Bipartite Contraction, Partial Vertex Cover, Partial Dominating

Set,

Topological Minor Containment, Immersion Containment,

Bounded Genus Contraction Containment, Odd Cycle Induced

Packing,

Odd Cycle Packing, Induced cycle, Optimal Embedding in a Surface
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Mondrian

Piet Mondrian, Composition with Yellow, Blue, and Red, 1921
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