Small minors in dense graphs

Samuel Fiorini, Gwenaël Joret Université Libre de Bruxelles

Dirk O. Theis Otto-von-Guericke-Universität Magdeburg

> David R. Wood University of Melbourne

> > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Minors and models

H minor of G if H can be obtained from a subgraph of G by contracting edges

H-model in *G*: collection $\{S_u : u \in V(H)\}$ of vertex-disjoint connected subgraphs of *G* s.t. \exists edge between S_u and S_v in *G* for every edge $uv \in E(H)$

A K₅-model

The S_u 's are called vertex images

Small models

 ${\mathcal F}$ some class of graphs

H fixed graph

 \mathcal{F} has small *H*-models if $\exists c = c(\mathcal{F})$ s.t. every *n*-vertex graph $G \in \mathcal{F}$ has an *H*-model with $\leq c \cdot \log n$ vertices

Example: $H = K_3$ and $\mathcal{F} = \{G : G \text{ has min. deg.} \geq 3\}$

Small models

 ${\mathcal F}$ some class of graphs

H fixed graph

 \mathcal{F} has small *H*-models if $\exists c = c(\mathcal{F})$ s.t. every *n*-vertex graph $G \in \mathcal{F}$ has an *H*-model with $\leq c \cdot \log n$ vertices

Example: $H = K_3$ and $\mathcal{F} = \{G : G \text{ has min. deg.} \geq 3\}$

This talk: average degree vs. small H-models

Mader's theorem

Theorem (Mader)

If G has average degree $\ge 2^{t-2}$ then G contains a K_t-minor

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Mader's theorem

Theorem (Mader)

If G has average degree $\ge 2^{t-2}$ then G contains a K_t-minor

 $\lambda(t) := \min r \text{ s.t. avg degree} \ge r \text{ implies a } K_t \text{-minor}$

 $\lambda(t)$ known for small values of t

Theorem (Kostochka, Thomason) $\lambda(t) = \Theta(t\sqrt{\log t})$

A 'small model' version of Mader's theorem

Theorem

Let $\varepsilon > 0$. If G has average degree $\ge 2^{t-1} + \varepsilon$ then G contains a K_t -model with $O_{t,\varepsilon}(\log n)$ vertices.

A 'small model' version of Mader's theorem

Theorem

Let $\varepsilon > 0$. If G has average degree $\ge 2^{t-1} + \varepsilon$ then G contains a K_t -model with $O_{t,\varepsilon}(\log n)$ vertices.

Motivation: packing and covering H-models

Packing and covering *H*-models

H fixed graph

 $\nu(G) := packing number$

= max. number of vertex-disjoint *H*-models in *G*

$\tau(G) := covering number$

= min. number of vertices hitting all *H*-models in *G*

$$\nu(G) \leqslant \tau(G) \quad \forall G$$

Packing and covering *H*-models

H fixed graph

 $\nu(G) := packing number$

= max. number of vertex-disjoint H-models in G

 $\tau(G) := covering number$

= min. number of vertices hitting all H-models in G

$$\nu(G) \leqslant \tau(G) \quad \forall G$$

Erdős-Pósa property of *H*-minors (Robertson and Seymour): τ bounded from above by a function of $\nu \Leftrightarrow H$ planar

Packing and covering *H*-models

H fixed graph

- $\nu(G) := packing number$
 - = max. number of vertex-disjoint H-models in G
- $\tau(G) := covering number$
 - = min. number of vertices hitting all *H*-models in *G*

$$\nu(G) \leqslant \tau(G) \quad \forall G$$

Erdős-Pósa property of *H*-minors (Robertson and Seymour): τ bounded from above by a function of $\nu \Leftrightarrow H$ planar

Known upper bounds $\tau \leqslant f(\nu)$ are big: $f(\nu) \in \Omega(2^{\nu^2})$

A variant of the Erdős-Pósa property

Let's introduce a small dependence in n

Question ("log *n* property") For which graphs *H* do we have $\tau \leq (c \log n)\nu$?

$$H = K_4 - e \checkmark \qquad \qquad H = K_4 ?$$

 $au \leqslant (6 \log_{3/2} n + 8)
u$ (Fiorini, J, Pietropaoli)

open

 $H = K_5 \mathbf{X}$

 $\sqrt{n} \times \sqrt{n}$ triangulated toroidal grid:

$\sqrt{n} \times \sqrt{n}$ triangulated toroidal grid:

 $\nu(G) = 1$ but $\tau(G) = \Theta(\sqrt{n})$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Question

H has the log *n* property \Leftrightarrow *H* planar?

Related optimization problems

H-MINOR PACKING INPUT: *G* SOLUTION: collection *C* of vertex-disjoint *H*-models GOAL: maximize |C|

H-MINOR COVERING INPUT: *G* SOLUTION: $X \subseteq V(G)$ s.t. G - X is *H*-minor free GOAL: minimize |X|

H-MINOR COVERING

$$H = K_2$$

vertex cover problem

► 2-approx.

$$H = K_4 - e$$

- $O(\log n)$ -approx.
- 9-approx.

(Fiorini, J, Pietropaoli)

$$H = K_3$$

feedback vertex set problem

- O(log n)-approx.
 (Bar-Yehuda et al.)
- ▶ 8-approx. (Even et al.)
- 2-approx.

(Bafna et al., Becker et al.,

Chudak et al.),

H not planar

open

Last week:

H planar

 $O(\log^{3/2} n)$ -approx. (Fomin et al.)

in fact: $O(\log^{3/2} \tau)$ -approx.

Main ingredients:

• treewidth lower bound on τ (excluded wall theorem)

• $\sqrt{\operatorname{tw}(G)}$ -approx. alg. for treewidth (Feige et al.)

H-MINOR PACKING

$$H = K_2$$

$$H = K_3 \qquad H = K_4 - e$$

• $O(\log n)$ -approx.

follows from proof of $\tau \leqslant (c \log n) \nu$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$H = K_4, \ldots$$

open

H-MINOR PACKING

$$H = K_2$$

$$H = K_3 \qquad H = K_4 - e$$

• $O(\log n)$ -approx.

follows from proof of $\tau \leqslant (c \log n) \nu$

$$H = K_4, \ldots$$

open

Algorithmic proof of $\tau \leq (c \log n)\nu$ $\Rightarrow O(\log n)$ -approx. algorithms for *H*-MINOR PACKING and *H*-MINOR COVERING

A 'small model' version of Mader's theorem Theorem

Let $\varepsilon > 0$. If G has average degree $\ge 2^{t-1} + \varepsilon$ then G contains a K_t -model with $O_{t,\varepsilon}(\log n)$ vertices.

A 'small model' version of Mader's theorem Theorem Let $\varepsilon > 0$. If G has average degree $\ge 2^{t-1} + \varepsilon$ then G

contains a K_t -model with $O_{t,\varepsilon}(\log n)$ vertices.

Proof. Induction on *t*. True for t = 2, assume $t \ge 3$.

Ideal situation:

with X inducing a dense subgraph

A 'small model' version of Mader's theorem Theorem Let $\varepsilon > 0$. If G has average degree $\ge 2^t + \varepsilon$ then G contains

a K_t -model with $O_{t,\varepsilon}(\log n)$ vertices.

Proof. Induction on *t*. True for t = 2, assume $t \ge 3$.

Ideal situation:

with X inducing a dense subgraph

What if G has large diameter?

What if G has large diameter?

can find dense subgraph with small diameter:

Lemma

Let d > d' > 2. Then every n-vertex graph with average degree $\ge d$ has a subgraph with average degree $\ge d'$ and diameter $O_{d,d'}(\log n)$

What if G has large diameter?

can find dense subgraph with small diameter:

Lemma

Let d > d' > 2. Then every n-vertex graph with average degree $\ge d$ has a subgraph with average degree $\ge d'$ and diameter $O_{d,d'}(\log n)$

⇒ *G* has a subgraph with average degree $\geq 2^t + \varepsilon/2$ and diameter $O_{t,\varepsilon}(\log n)$

What if G has large diameter?

can find dense subgraph with small diameter:

Lemma

Let d > d' > 2. Then every n-vertex graph with average degree $\ge d$ has a subgraph with average degree $\ge d'$ and diameter $O_{d,d'}(\log n)$

⇒ G has a subgraph with average degree $\ge 2^t + \varepsilon/2$ and diameter $O_{t,\varepsilon}(\log n) \rightarrow$ let's focus on such a subgraph

Now G has avg degree $\geq 2^t + \varepsilon/2$ and small diameter

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

What if G[X] is too sparse for every layer X?

What if G[X] is too sparse for every layer X? could happen if e.g. G is bipartite:

 \rightarrow let's consider two consecutive layers

 $xy \in E(G)$ is even / odd if distance between root and $\{x, y\}$ is even / odd

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 $xy \in E(G)$ is even / odd if distance between root and $\{x, y\}$ is even / odd

one of these contains \geq half of the edges

 $\Rightarrow \text{ some component has avg degree } \geq \frac{1}{2}(2^{t} + \varepsilon/2) = 2^{t-1} + \varepsilon/4$

 $xy \in E(G)$ is even / odd if distance between root and $\{x, y\}$ is even / odd

one of these contains \geq half of the edges

 \Rightarrow some *component* has avg degree $\ge \frac{1}{2}(2^t + \varepsilon/2) = 2^{t-1} + \varepsilon/4$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Ideally:

くしゃ (中)・(中)・(中)・(日)

a small K_{t-1} -model

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Ideally:

a small K_{t-1} -model

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Ideally:

a small K_{t-1} -model \Rightarrow a small K_t -model

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

What if some vertex image is contained in the bottom layer?

◆□> ◆□> ◆三> ◆三> ・三 のへの

What if some vertex image is contained in the bottom layer?

 \rightarrow let's prove a stronger statement:

"avg degree $2^t + \varepsilon \Rightarrow K_t$ -model with $O_{t,\varepsilon}(\log n)$ vertices s.t. no vertex image is a singleton"

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

What if some vertex image is contained in the bottom layer?

 \rightarrow let's prove a stronger statement:

"avg degree $2^t + \varepsilon \Rightarrow K_t$ -model with $O_{t,\varepsilon}(\log n)$ vertices s.t. no vertex image is a singleton"

Root at an edge:

・ロト・4回ト・4回ト・4回ト・4回ト

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

What if our 'dense component' contains the root?

What if our 'dense component' contains the root?

each non-root vertex has degree ≤ 2 in component \Rightarrow avg degree $\leq 4 < 2^{t-1} + \varepsilon/4$ (since $t \geq 3$)

Reducing the bound to $2^{t-1} + \varepsilon$

Same proof, i.e. show:

"avg degree $2^{t-1} + \varepsilon \Rightarrow K_t$ -model with $O_{t,\varepsilon}(\log n)$ vertices s.t. no vertex image is a singleton"

Base case t = 2

Inductive step:

- $t \ge 4$
- \bullet t = 3 X

because dense component could contain the root edge

$$\rightarrow$$
 prove claim for $t = 3$ separately

Tight bounds for $t \leq 4$

- Average degree $\geq \varepsilon$ guarantees a small K_2 -model
- ▶ Average degree $\ge 2 + \varepsilon$ guarantees a small K_3 -model

Theorem

Average degree \ge 4 + ε guarantees a small K₄-model

Best possible:

-

Overview of the proof:

- consider subgraph with avg degree ≥ 4 + ε/2 and diameter O_ε(log n)
- remove edge-set of a BFS tree
- resulting graph H has avg degree ≥ 2 + ε/2
 ⇒ H has a O_ε(log n) cycle
- consider how the cycle is attached to the BFS tree

Overview of the proof:

- consider subgraph with avg degree ≥ 4 + ε/2 and diameter O_ε(log n)
- remove edge-set of a BFS tree
- resulting graph H has avg degree ≥ 2 + ε/2
 ⇒ H has a O_ε(log n) cycle
- consider how the cycle is attached to the BFS tree

Constant-size K_4 -models in planar graphs

G is 4-connected, planar, and has no small K_4 -model

Theorem

Every planar graph with average degree $\ge 4 + \varepsilon$ has a K_4 -model with $O(1/\varepsilon)$ vertices

Theorem Every planar graph with $\underline{minimum}$ degree 5 has a K₄-model with at most 8 vertices

Tight:

Higher genus surfaces

Theorem

Suppose

- G has average degree \geq 4 + ε ,
- ▶ G is 3-connected, and
- G has an embedding in a surface of Euler genus g with facewidth ≥ 3

Then G has a K₄-model with $\leq f(\varepsilon) \cdot \log(g+2)$ vertices

Tight up to the value of $f(\varepsilon)$

▶ is there a polynomial function f(t) s.t. average degree ≥ f(t) guarantees a small K_t-model?

▶ is there a polynomial function f(t) s.t. average degree ≥ f(t) guarantees a small K_t-model?

• what about t = 5? $2^{t-1} + \varepsilon = 16 + \varepsilon$ is enough, 6 is not:

▶ is there a polynomial function f(t) s.t. average degree ≥ f(t) guarantees a small K_t-model?

• what about t = 5? $2^{t-1} + \varepsilon = 16 + \varepsilon$ is enough, 6 is not:

• characterize graphs H s.t. $\tau \leq (c \log n)\nu$

- ▶ is there a polynomial function f(t) s.t. average degree ≥ f(t) guarantees a small K_t-model?
- what about t = 5? $2^{t-1} + \varepsilon = 16 + \varepsilon$ is enough, 6 is not:

- characterize graphs *H* s.t. $\tau \leq (c \log n)\nu$
- ► For which *H* does *H*-MINOR PACKING / *H*-MINOR COVERING admits
 - ▶ an O(log n)-approx. algorithm?
 - ► a constant-factor approx. algorithm?