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Minors and models
H minor of G if H can be obtained from a subgraph of G by
contracting edges

H-model in G : collection {Su : u ∈ V (H)} of vertex-disjoint
connected subgraphs of G s.t. ∃ edge between Su and Sv in G
for every edge uv ∈ E (H)

A K5-model

The Su’s are called vertex images



Small models

F some class of graphs

H fixed graph

F has small H-models if ∃ c = c(F) s.t. every n-vertex graph
G ∈ F has an H-model with 6 c · log n vertices

Example: H = K3 and F = {G : G has min. deg. > 3}

This talk: average degree vs. small H-models
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Mader’s theorem

Theorem (Mader)
If G has average degree > 2t−2 then G contains a Kt-minor

λ(t) := mininum real r s.t. avg degree > r implies a Kt-minor

λ(t) known for small values of t

t 3 4 5 6 7
λ(t) 2 4 6 8 10

Theorem (Kostochka, Thomason)
λ(t) = Θ(t

√
log t)
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A ‘small model’ version of Mader’s theorem

Theorem
Let ε > 0. If G has average degree > 2t−1 + ε then G
contains a Kt-model with Ot,ε(log n) vertices.

Motivation: packing and covering H-models
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Packing and covering H-models

H fixed graph

ν(G ) := packing number
= max. number of vertex-disjoint H-models in G

τ(G ) := covering number
= min. number of vertices hitting all H-models in G

ν(G ) 6 τ(G ) ∀G

Erdős-Pósa property of H-minors (Robertson and Seymour):

τ bounded from above by a function of ν ⇔ H planar

Known upper bounds τ 6 f (ν) are big: f (ν) ∈ Ω(2ν
2
)
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A variant of the Erdős-Pósa property
Let’s introduce a small dependence in n

Question (“log n property”)
For which graphs H do we have τ 6 (c log n)ν?

H = K2

τ 6 2ν

H = K4 − e

τ 6 (6 log3/2 n + 8)ν
(Fiorini, J, Pietropaoli)

H = K3

τ 6 (2 log2 n)ν

H = K4

open



H = K5
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H = K5 H not planar
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Question
H has the log n property ⇔ H planar?



Related optimization problems

H-Minor Packing
INPUT: G
SOLUTION: collection C of vertex-disjoint H-models
GOAL: maximize |C|

H-Minor Covering
INPUT: G
SOLUTION: X ⊆ V (G ) s.t. G − X is H-minor free
GOAL: minimize |X |



H-Minor Covering

H = K2

vertex cover problem

I 2-approx.

H = K4 − e

I O(log n)-approx.

I 9-approx.

(Fiorini, J, Pietropaoli)

H = K3

feedback vertex set problem

I O(log n)-approx.
(Bar-Yehuda et al.)

I 8-approx. (Even et al.)

I 2-approx.
(Bafna et al., Becker et al.,

Chudak et al.),

H not planar

open



Last week:

H planar

O(log3/2 n)-approx. (Fomin et al.)

in fact: O(log3/2 τ)-approx.

Main ingredients:

I treewidth lower bound on τ (excluded wall theorem)

I
√

tw(G )-approx. alg. for treewidth (Feige et al.)



H-Minor Packing

H = K2

maximum matching

H = K4, . . .

open

H = K3 H = K4 − e

I O(log n)-approx.

follows from proof of τ 6 (c log n)ν

Algorithmic proof of τ 6 (c log n)ν
⇒ O(log n)-approx. algorithms for H-Minor Packing and
H-Minor Covering
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A ‘small model’ version of Mader’s theorem
Theorem
Let ε > 0. If G has average degree > 2t−1 + ε then G
contains a Kt-model with Ot,ε(log n) vertices.

Proof. Induction on t. True for t = 2, assume t > 3.

Ideal situation:

c log n
X

root

BFS

with X inducing a dense subgraph
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c log n
X

root

BFS

What if G has large diameter?

can find dense subgraph with small diameter:

Lemma
Let d > d ′ > 2. Then every n-vertex graph with average
degree > d has a subgraph with average degree > d ′ and
diameter Od ,d ′(log n)

⇒ G has a subgraph with average degree > 2t + ε/2 and
diameter Ot,ε(log n) → let’s focus on such a subgraph
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What if G has large diameter?
can find dense subgraph with small diameter:

Lemma
Let d > d ′ > 2. Then every n-vertex graph with average
degree > d has a subgraph with average degree > d ′ and
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Now G has avg degree > 2t + ε/2 and small diameter

c log n
X

root

BFS

What if G [X ] is too sparse for every layer X?



What if G [X ] is too sparse for every layer X?
could happen if e.g. G is bipartite:

root

→ let’s consider two consecutive layers



xy ∈ E (G ) is even / odd if distance between root and {x , y}
is even / odd

even

odd

root



xy ∈ E (G ) is even / odd if distance between root and {x , y}
is even / odd

even subgraph odd subgraph

root root

one of these contains > half of the edges

⇒ some component has avg degree > 1
2
(2t + ε/2) = 2t−1 + ε/4
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Ideally:

BFS

root

dense
component

a small Kt−1-model
⇒ a small Kt-model



What if some vertex image is contained in the bottom layer?

singleton

root

→ let’s prove a stronger statement:

“avg degree 2t + ε ⇒ Kt-model with Ot,ε(log n) vertices
s.t. no vertex image is a singleton”

new vertex image from BFS must have > 2 vertices
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Root at an edge:

even

odd

root edge



root edge

What if our ‘dense component’ contains the root?



root edge

What if our ‘dense component’ contains the root?

each non-root vertex has degree 6 2 in component
⇒ avg degree 6 4 < 2t−1 + ε/4 (since t > 3)

�



Reducing the bound to 2t−1 + ε

Same proof, i.e. show:

“avg degree 2t−1 + ε ⇒ Kt-model with Ot,ε(log n) vertices
s.t. no vertex image is a singleton”

Base case t = 2

Inductive step:

I t > 4

I t = 3
because dense component could contain the root edge

→ prove claim for t = 3 separately



Tight bounds for t 6 4

I Average degree > ε guarantees a small K2-model
I Average degree > 2 + ε guarantees a small K3-model

Theorem
Average degree > 4 + ε guarantees a small K4-model

Best possible:



Overview of the proof:

I consider subgraph with avg degree > 4 + ε/2 and
diameter Oε(log n)

I remove edge-set of a BFS tree

I resulting graph H has avg degree > 2 + ε/2
⇒ H has a Oε(log n) cycle

I consider how the cycle is attached to the BFS tree

root

BFS
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Constant-size K4-models in planar graphs

G is 4-connected, planar, and has no small K4-model

Theorem
Every planar graph with average degree > 4 + ε has a
K4-model with O(1/ε) vertices



Theorem
Every planar graph with minimum degree 5 has a K4-model
with at most 8 vertices

Tight:



Higher genus surfaces

Theorem
Suppose

I G has average degree > 4 + ε,

I G is 3-connected, and

I G has an embedding in a surface of Euler genus g with
facewidth > 3

Then G has a K4-model with 6 f (ε) · log(g + 2) vertices

Tight up to the value of f (ε)



Open problems
I is there a polynomial function f (t) s.t. average degree
> f (t) guarantees a small Kt-model?

I what about t = 5? 2t−1 + ε = 16 + ε is enough, 6 is not:
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I characterize graphs H s.t. τ 6 (c log n)ν
I For which H does H-Minor Packing / H-Minor

Covering admits
I an O(log n)-approx. algorithm?
I a constant-factor approx. algorithm?
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