Introduction to Exponential Time Algorithms séminaire AlGco

Serge Gaspers¹

¹LIRMM – Université Montpellier 2, CNRS

January 22, 2009

Exponential time algorithms

S. Gaspers

Introduction Exponential Time Algorithms Problem Definitions

Agonamic Design Dynamic Programming across Subsets Branch & Reduce Memorization Treewidth Treewidth combined with Branch & Reduce Iterative Compression Inclusion-Exclusion

Conclusion

(日)

Outline

Introduction

- Exponential Time Algorithms
- Problem Definitions

Algorithm Design Techniques

- Dynamic Programming across Subsets
- Branch & Reduce
- Memorization
- Treewidth
- Treewidth combined with Branch & Reduce
- Iterative Compression
- Inclusion-Exclusion

Exponential time algorithms

S. Gaspers

Introduction Exponential Time Algorithms Problem Definitions

Algorithm Design Techniques

Dynamic Programming across Subsets Branch & Reduce Memorization Treewidth Treewidth combined with Branch & Reduce Iterative Compression Inclusion-Exclusion

Conclusion

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

Outline

Introduction

- Exponential Time Algorithms
- Problem Definitions

Algorithm Design Techniques

- Dynamic Programming across Subsets
- Branch & Reduce
- Memorization
- Treewidth
- Treewidth combined with Branch & Reduce
- Iterative Compression
- Inclusion-Exclusion

Conclusion

Exponential time algorithms

S. Gaspers

Introduction Exponential Time Algorithms Problem Definitions

Algorithm Design Techniques

Dynamic Programming across Subsets Branch & Reduce Memorization

Treewidth

Ireewidth combined with Branch & Reduce Iterative Compression

Conclusion

・ロト ・ (理 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

- no known polynomial time algorithm for any NP-hard problem
- belief: $P \neq NP$
- ETH: 3-Sat cannot be solved in subexponential time
- (thus many other problems cannot be solved in subexponential time either)

Exponential time algorithms

S. Gaspers

Introduction Exponential Time Algorithms Problem Definitions

Algorithm Design Techniques

across Subsets Branch & Reduce Memorization Treewidth

Ireewidth combined with Branch & Reduce Iterative Compression

Conclusion

Dealing with NP-hard problems

Approaches to attack NP-hard problems

- approximation algorithms
- randomized algorithms
- fixed parameter algorithms
- exact exponential time algorithms
- heuristics
- restricting the inputs

Exponential time algorithms

S. Gaspers

Introduction Exponential Time Algorithms

Algorithm Design Techniques

Dynamic Programming across Subsets Branch & Reduce Memorization

Treewidth

Treewidth combined with Branch & Reduce Iterative Compression

Conclusion

Exponential Time Algorithms

- natural question in Algorithms: design faster (worst-case analysis) algorithms for problems
- might lead to practical algorithms
 - for small instances
 - subroutines for
 - (sub)exponential time approximation algorithms
 - randomized algorithms with expected polynomial run time

interesting combinatorics

Exponential time algorithms

S. Gaspers

Introduction Exponential Time Algorithms Problem Definitions

Igorithm Design echniques Dynamic Programming across Subsets Bronch & Reduce

Memorization

Treewidth combined with Branch & Reduce Iterative Compression Inclusion-Exclusion

Solve a NP hard problem

exhaustive search

- trivial method
- try all possible solutions for a ground set on n elements
- running times for problems in NP
 - SUBSET PROBLEMS: $\mathcal{O}^*(2^n)^{-1}$
 - PERMUTATION PROBLEMS: $\mathcal{O}^*(n!)$
 - PARTITION PROBLEMS: $\mathcal{O}^*(c^{n \log n})$
- faster exact algorithms
 - for some problems, it is possible to obtain provably faster algorithms

(日)((四))(日)(日)(日)

• running times $\mathcal{O}(1.0892^n), \mathcal{O}(1.5086^n), \mathcal{O}(1.9977^n)$

Exponential time algorithms

S. Gaspers

Introduction Exponential Time Algorithms

Igorithm Design

Dynamic Programming across Subsets Branch & Reduce Memorization Treewidth Treewidth combined with Branch & Reduce Iterative Compression Iterative Compression

Conclusion

 $_{7/50} {}^{1}\mathcal{O}^{*}(f(n)) \equiv \mathcal{O}(f(n) \cdot \operatorname{poly}(n))$

Exponential Time Algorithms in Practice

• How large are the instances one can solve in practice?

Available time	1 s	1 min	1 hour	3 days	6 months
nb. of operations	2^{30}	2^{36}	2^{42}	2^{48}	2 ⁵⁴
n^5	64	145	329	774	1756
n^{10}	8	12	18	27	41
1.05^{n}	426	510	594	681	765
1.1^{n}	218	261	304	348	391
1.5^{n}	51	61	71	82	92
2^n	30	36	42	48	54
5 ⁿ	12	15	18	20	23
<i>n</i> !	12	14	15	17	18

Exponential time algorithms

6. Gaspers

Introduction Exponential Time Algorithms Problem Definitions

Algorithm Design Fechniques Dynamic Programming across Subsets Branch & Reduce Memorization Treewidth Treewidth Combined with Branch & Reduce Iterative Compression Inclusion-Exclusion

Technology vs. Algorithms

- Suppose a 2ⁿ algo enables us to solve instances up to size x
- Faster processors
 - processor speed doubles after 18–24 months (according to Moore's law)
 - can solve instances up to size x + 1
- Faster algorithm
 - design a $2^{n/2} = 1.4143^n$ time algorithm
 - can solve instances up to size 2 · x

Exponential time algorithms

S. Gaspers

Introduction Exponential Time Algorithms Problem Definitions

Agorithm Design lechniques Dynamic Programming across Subsets Branch & Reduce Mamorization Treewidth Treewidth combined with Branch & Reduce Iterative Compression Inclusion-Exclusion

Conclusion

Outline

Introduction

- Exponential Time Algorithms
- Problem Definitions

Algorithm Design Techniques

- Dynamic Programming across Subsets
- Branch & Reduce
- Memorization
- Treewidth
- Treewidth combined with Branch & Reduce
- Iterative Compression
- Inclusion-Exclusion

Conclusion

Exponential time algorithms

S. Gaspers

Introduction Exponential Time Algorithms Problem Definitions

Algorithm Design Techniques

across Subsets Branch & Reduce Memorization Treewidth

Treewidth combined with Branch & Reduce Iterative Compression Inclusion-Exclusion

Conclusion

・ロト ・ (理 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

Subset Problem: MAXIMUM INDEPENDENT Set

MAXIMUM INDEPENDENT SET (MIS)

- Input: A graph G = (V, E).
- Output: An independent set of G of maximum cardinality.
- $I \subseteq V$ is an independent set if the vertices in I are pairwise non-adjacent.

Exponential time algorithms

Problem Definitions

Permutation Problem: TRAVELING SALESMAN

TRAVELING SALESMAN PROBLEM (TSP)

- Input: a set of *n* cities, the distance d(i, j) between every two cities i and j.
- Output: A tour visiting all cities with minimum total distance.
- A tour is a permutation of the cities, starting and ending in city 1.
- Trivial algorithm checks all the permutations of the cities
 Running time O(n!)

Exponential time algorithms

S. Gaspers

Introduction Exponential Time Algorithms Problem Definitions

Algorithm Design Techniques Dynamic Programming across Subsets Branch & Reduce Memorization Treewidth Treewidth combined with Branch & Reduce Iterative Compression Inclusion-Exclusion

Partition Problem: COLORING

COLORING (COL)

- Input: A graph G = (V, E).
- Output: A coloring of V with the smallest number of colors.
- A coloring *f* : *V* → {1, 2, ..., *k*} is a function assigning colors to *V* such that 2 adjacent vertices never receive the same color.

Exponential time algorithms

S. Gaspers

Introduction Exponential Time Algorithms Problem Definitions

```
sigorithm Design
fechniques
Dynamic Programming
across Subsets
Eranch & Reduce
Memorization
Treewidth
Treewidth combined
with Branch & Reduce
Iterative Compression
Inclusion-Exclusion
```

Outline

Introduction

- Exponential Time Algorithms
- Problem Definitions

Algorithm Design Techniques

- Dynamic Programming across Subsets
- Branch & Reduce
- Memorization
- Treewidth
- Treewidth combined with Branch & Reduce
- Iterative Compression
- Inclusion-Exclusion

Conclusion

Exponential time algorithms

6. Gaspers

Introduction Exponential Time Algorithms Problem Definitions

Algorithm Design Techniques

Dynamic Programming across Subsets

Branch & Reduce

Treewidth

Treewidth combined with Branch & Reduce Iterative Compression

Conclusion

・ロト ・ (理 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

Dynamic Programming across Subsets

- very general technique
- uses solutions of subproblems
- typically stored in a table of exponential size

Exponential time algorithms

S. Gaspers

Introduction Exponential Time Algorithms Problem Definitions

Algorithm Design Techniques

Dynamic Programming across Subsets

Branch & Reduce

Treewidth combined with Branch & Reduce Iterative Compression

_ . .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Dynamic Programming for TSP

TRAVELING SALESMAN PROBLEM (TSP)

- Input: a set of *n* cities {1,2,...,*n*}, the distance *d*(*i*,*j*) between every two cities *i* and *j*.
- Output: A tour visiting all cities with minimum total distance.
- A tour is a permutation of the cities, starting and ending in city 1.

Exponential time algorithms

S. Gaspers

Introduction Exponential Time Algorithms Problem Definitions

Algorithm Design Fechniques

Dynamic Programming across Subsets Branch & Reduce

Memorization

Treewidth

Ireewidth combined with Branch & Reduce Iterative Compression

Conclusion

・ロ・・ 日・・ ヨ・・ ヨ・ うぐつ

Dynamic Programming for TSP (2)

- city *i*, non-empty subset of cities $S \subseteq \{2, 3, ..., n\}$
- OPT[S; i] ≡ length of the shortest path starting in city 1, visits all cities in S \ {i} and ends in i.

Then,

- For each subset S in in order of increasing cardinality, compute OPT[S; i] for each i.
- Final solution:

$$\min_{2 \le j \le n} \{ \mathsf{OPT}[\{2, 3, ..., n\}; j] + d(j, 1) \}$$

Exponential time algorithms

S. Gaspers

Introduction Exponential Time Algorithms Problem Definitions

Algorithm Design lechniques

Dynamic Programming across Subsets Branch & Reduce Memorization

Ireewidth Treewidth combined with Branch & Reduce Iterative Compression Inclusion-Exclusion

Dynamic Programming for TSP (3)

Theorem 1 (Held & Karp '62)

TSP can be solved in time $\mathcal{O}(2^n n^2) = O^*(2^n)$.

best known algo for TSP

Exponential time algorithms

S. Gaspers

Introduction Exponential Time Algorithms Problem Definitions

Algorithm Design Techniques

Dynamic Programming across Subsets Branch & Reduce Memorization Treewidth Treewidth combined with Branch & Reduce

Iterative Compression

Conclusion

Outline

Introduction

- Exponential Time Algorithms
- Problem Definitions

Algorithm Design Techniques

- Dynamic Programming across Subsets
- Branch & Reduce
- Memorization
- Treewidth
- Treewidth combined with Branch & Reduce
- Iterative Compression
- Inclusion-Exclusion

Conclusion

Exponential time algorithms

S. Gaspers

Introduction Exponential Time Algorithms Problem Definitions

Algorithm Design Techniques

Dynamic Programming across Subsets

Branch & Reduce

Memorization

Treewidth combined with Branch & Reduce

Inclusion-Exclusion

Conclusion

・ロト ・ (理 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

Branch & Reduce

Branch & Reduce Algorithm

- Select a local configuration of the instance
- Determine all possible values this part can take
- Recursively solve smaller subproblems based on these values
- Return the best of these solutions
- 1 possible value: Reduction Rule (polynomial)
- >1 possible value: Branching Rule (exponential)

Exponential time algorithms

S. Gaspers

Introduction Exponential Time Algorithms Problem Definitions

Algorithm Design Techniques

Dynamic Programming across Subsets

Branch & Reduce

Treewidth

with Branch & Reduce Iterative Compression Inclusion-Exclusion

Conclusion

Branch & Reduce for MIS

MIS(G)

- If there is a vertex v of degree at most 1, return $\{v\} \cup MIS(G N[v])$
- Else if G contains k > 1 connected components G₁, ..., G_k, return ∪^k_{i=1} MIS(G_i)
- Else if the maximum degree of G is ≤ 2, solve the problem in polynomial time
- Else Select a vertex v of maximum degree Return the largest set among

• {**MIS**
$$(G - v)$$
,

•
$$\{v\} \cup \mathbf{MIS}(G - N[v])\}$$

Exponential time algorithms

S. Gaspers

Introduction Exponential Time Algorithms Problem Definitions

Algorithm Design Fechniques

Dynamic Programming across Subsets

Branch & Reduce

Treewidth

Treewidth combined with Branch & Reduce Iterative Compression Inclusion-Exclusion

Conclusion

Standard Running time analysis

- The branching rule selects a vertex v of degree ≥ 3
- It considers the subproblems $\{MIS(G v), \{v\} \cup MIS(G N[v])\}$
- In the 1st branch, 1 vertex is deleted, in the 2nd branch \geq 4
- *T*(*n*) is the running time of the algo for a graph on *n* vertices

•
$$T(n) \le T(n-1) + T(n-4)$$

- $x^n \leq x^{n-1} + x^{n-4}$
- $x^4 x^3 1 = 0$
- *x* ≈ 1.380277
- Running time: $O(1.3803^n)$

Exponential time algorithms

S. Gaspers

Introduction Exponential Time Algorithms Problem Definitions

Algorithm Design Techniques

Dynamic Programming across Subsets

Branch & Reduce

memorization Treewidth Treewidth combined with Branch & Reduce Iterative Compression

Conclusion

- Measure & Conquer: Technique to better analyze Branch & Reduce algorithms
- same algo, better running-time analysis
- instead of using n as a measure, use sth. more clever
- let's use Measure & Conquer to analyze our algorithm for MIS
- we consider an instance with many vertices of small degree as "easier"
- ullet \Rightarrow assign weights to the vertices according to their degree

Exponential time algorithms

S. Gaspers

Introduction Exponential Time Algorithms Problem Definitions

Algorithm Design Techniques

Dynamic Programming across Subsets

Branch & Reduce

Treewidth Treewidth combined with Branch & Reduce Iterative Compression Inclusion-Exclusion

Measure & Conquer (2)

- Measure: $\mu(G) = w_2n_2 + w_3n_3 + w_4n_{\geq 4}$
- *n_x* is the number of vertices of degree *x*
- advantage when the degree of a vertex decreases

$$\bullet \Rightarrow w_2 \le w_3 \le w_4$$

- We want $\mu(G) \le n \Rightarrow w_4 = 1$
- To simplify the analysis, suppose $w_4 w_3 \le w_3 w_2 \le w_2$.
- I.e. (i) is more advantageous to (i+1)
 - (1) delete a vertex (of degree ≥ 2)
 - ecrease the degree of a vertex from 3 to 2
 - decrease the degree of a vertex from 4 to 3

Exponential time algorithms

S. Gaspers

Introduction Exponential Time Algorithms Problem Definitions

Algorithm Design Techniques

Dynamic Programming across Subsets

Branch & Reduce

Treewidth

reewidth combined vith Branch & Reduce terative Compression

Inclusion-Exclusion

Measure & Conquer (3)

Branch on a vertex of degree 3 with 3 neighbors of degree 3

Branch on a vertex of degree 3 with 2 neighbors of degree 3

・ロン ・四 と ・ 回 と ・ 回 ・

Exponential time algorithms

S. Gaspers

Introduction Exponential Time Algorithms Problem Definitions

Algorithm Design Fechniques Dynamic Programming

across Subsets Branch & Reduce

Memorization Treewidth Treewidth combined with Branch & Reduce

Iterative Compression

Conclusion

25/50

V

Measure & Conquer (4)

Branch on a vertex of degree 4

$$T(\mu) \le T(\mu - 4w_2 - w_4) + T(\mu + 4w_3 - 5w_4)$$

• Branch on a vertex of degree ≥ 5

7

$$T(\mu) \le T(\mu - 5w_2 - w_4) + T(\mu - w_4)$$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへ⊙

Exponential time algorithms

S. Gaspers

Introduction Exponential Time Algorithms Problem Definitions

Algorithm Design Fechniques Dynamic Programming

Branch & Reduce

Memorization Treewidth Treewidth combined

Iterative Compression

26/50

Measure & Conquer (5)

System of recurrences

$$T(\mu) \le max \begin{cases} T(\mu - 4w_3) + T(\mu + 3w_2 - 4w_3) \\ T(\mu - w_2 - 3w_3) + T(\mu - 3w_3) \\ T(\mu - 2w_2 - 2w_3) + T(\mu - 3w_2 - 2w_3) \\ T(\mu - 3w_2 - w_3) + T(\mu - 6w_2 - w_3) \\ T(\mu - 4w_2 - w_4) + T(\mu + 4w_3 - 5w_4) \\ T(\mu - 5w_2 - w_4) + T(\mu - 4w_4) \end{cases}$$

 optimal values for w₂, w₃ found by local search or quasiconvex programming [Eppstein '04]

•
$$\Rightarrow w_2 = 0.7533, w_3 = 0.9262, w_4 = 1$$

• Final running time: $\mathcal{O}(1.3360^n)$

Exponential time algorithms

S. Gaspers

Introduction Exponential Time Algorithms Problem Definitions

Algorithm Design Techniques Dynamic Programming

across Subsets Branch & Beduce

Branch & Reduce

Treewidth

Treewidth combined with Branch & Reduce Iterative Compression

Inclusion-Exclusion

Conclusion

Best Algorithms for MIS

- \$\mathcal{O}(1.1889^n)\$ [Robson '01] very complicated, computer-generated algorithm, exponential space
- O(1.2210ⁿ) [Fomin, Grandoni, Kratsch '06] very simple algorithm, Measure & Conquer analysis, polynomial space

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Exponential time algorithms

S. Gaspers

Introduction Exponential Time Algorithms Problem Definitions

Algorithm Design Techniques

Dynamic Programming across Subsets

Branch & Reduce

Memorization Treewidth

Treewidth combined with Branch & Reduce Iterative Compression Inclusion-Exclusion

Outline

Introduction

- Exponential Time Algorithms
- Problem Definitions

Algorithm Design Techniques

- Dynamic Programming across Subsets
- Branch & Reduce

Memorization

- Treewidth
- Treewidth combined with Branch & Reduce
- Iterative Compression
- Inclusion-Exclusion

Conclusion

Exponential time algorithms

S. Gaspers

Introduction Exponential Time Algorithms Problem Definitions

Algorithm Design Techniques

Dynamic Programming across Subsets

Memorization

Treewidth

Treewidth combined with Branch & Reduce Iterative Compression Inclusion-Exclusion

Conclusion

・ロト ・ (理 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

Speed-up by memorization

Memorization

For each subgraph of size $\leq \alpha n$, compute an optimal solution and store it in a DB Add the following rule to the algorithm:

- If $|V| \leq \alpha n$, retrieve the solution from the DB
- Compute the optimal solution for small subgraphs takes time ⁿ_{αn} (using dynamic programming)
- The new rule ensures that branching does not occur if the graph has ≤ αn vertices
- Running time: $\min_{\alpha} \max\{1.3803^{n-\alpha n}, \binom{n}{\alpha n}\} = 1.3424^n$ for $\alpha = 0.0865$

Exponential time algorithms

S. Gaspers

Introduction Exponential Time Algorithms Problem Definitions

Algorithm Design Techniques Dynamic Programming across Subsets

Branch & Reduce

Memorization

Treewidth Creewidth combined with Branch & Reduce Iterative Compression

Inclusion-Exclusion

Outline

Introduction

- Exponential Time Algorithms
- Problem Definitions

Algorithm Design Techniques

- Dynamic Programming across Subsets
- Branch & Reduce
- Memorization

Treewidth

- Treewidth combined with Branch & Reduce
- Iterative Compression
- Inclusion-Exclusion

Conclusion

Exponential time algorithms

S. Gaspers

Introduction Exponential Time Algorithms Problem Definitions

Algorithm Design Techniques

Dynamic Programming across Subsets Branch & Reduce

Memorization

Treewidth

Treewidth combined with Branch & Reduce Iterative Compression Inclusion-Exclusion

Conclusion

・ロト ・ (理 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

Treewidth, Tree Decomposition

• Treewidth (tw) measures how tree-like a graph is

Exponential time algorithms

Treewidth

(日)

- This graph has treewidth 2
- Trees have treewidth 1

Theorem 2 (Fomin, Gaspers, Saurabh, Stepanov)

For any $\epsilon > 0$, there exists an integer n_{ϵ} such that for every graph *G* with $n > n_{\epsilon}$ vertices,

$$pw(G) \le \frac{1}{6}n_3 + \frac{1}{3}n_4 + \frac{13}{30}n_5 + \frac{23}{45}n_6 + n_{\ge 7} + \epsilon n$$

where n_x is the number of vertices of degree x in G. Moreover, a path decomposition of the corresponding width can be constructed in polynomial time.

tw(*G*) ≤ *pw*(*G*) for any graph *G* because every path decomposition of a graph *is* a tree decomposition

Exponential time algorithms

S. Gaspers

Introduction Exponential Time Algorithms Problem Definitions

lgorithm Design echniques Dynamic Programming

across Subsets Branch & Reduce Memorization

Treewidth

Treewidth combined with Branch & Reduce Iterative Compression Inclusion-Exclusion

Treewidth Algorithm for MIS

- Given a graph *G* and a tree decomposition for *G* of width *k*,
- MIS can be solved in time $2^k n^{\mathcal{O}(1)}$
- (dynamic programming using the tree decomposition)
- For graphs of maximum degree 3: $\mathcal{O}^*(2^{n/6+\epsilon n}) = \mathcal{O}^*(1.1225^n)$
- For graphs of maximum degree 4: $\mathcal{O}^*(2^{n/3+\epsilon n}) = \mathcal{O}^*(1.2600^n)$

Exponential time algorithms

S. Gaspers

Introduction Exponential Time Algorithms Problem Definitions

Algorithm Design Techniques

Dynamic Programming across Subsets Branch & Reduce

Memorization

Treewidth

Treewidth combined with Branch & Reduce Iterative Compression Inclusion-Exclusion

Conclusion

Outline

Introduction

- Exponential Time Algorithms
- Problem Definitions

Algorithm Design Techniques

- Dynamic Programming across Subsets
- Branch & Reduce
- Memorization
- Treewidth

Treewidth combined with Branch & Reduce

- Iterative Compression
- Inclusion-Exclusion

Conclusion

Exponential time algorithms

S. Gaspers

Introduction Exponential Time Algorithms Problem Definitions

Algorithm Design Techniques

Dynamic Programming across Subsets Branch & Reduce

Memorization

Treewidth

Treewidth combined with Branch & Reduce Iterative Compression

Inclusion-Exclusion

Conclusion

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Treewidth/Branch & Reduce Algorithm for MIS

MIS(G)

- If there is a vertex v of degree at least 5, Return the largest set among
 - {**MIS**(G v),
 - $\{v\} \cup \mathbf{MIS}(G N[v])\}$
- Else (the maximum degree of G is \leq 4)
 - compute a tree decomposition of G
 - solve the problem using this tree decomposition
- $T(n) \leq T(n-1) + T(n-6) \Rightarrow \mathcal{O}^*(1.2852^n)$
- Tree decomposition has width $\leq \frac{1}{3}n \Rightarrow \mathcal{O}^*(1.2600^n)$
- Total: $O^*(1.2852^n)$

Exponential time algorithms

S. Gaspers

Introduction Exponential Time Algorithms Problem Definitions

Algorithm Design Fechniques Dynamic Programming

across Subsets Branch & Reduce Memorization

Treewidth

Treewidth combined with Branch & Reduce Iterative Compression Inclusion-Exclusion

Outline

Introduction

- Exponential Time Algorithms
- Problem Definitions

Algorithm Design Techniques

- Dynamic Programming across Subsets
- Branch & Reduce
- Memorization
- Treewidth
- Treewidth combined with Branch & Reduce
- Iterative Compression
- Inclusion-Exclusion

Conclusion

Exponential time algorithms

S. Gaspers

Introduction Exponential Time Algorithms Problem Definitions

Algorithm Design Techniques

Dynamic Programming across Subsets

Branch & Heduce

Treewidth

Treewidth combined with Branch & Reduce

Iterative Compression

Inclusion-Exclusion

Conclusion

・ロト ・ (理 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

Iterative Compression

Core Idea

Inductive approach: Compute a solution for a problem instance using the information provided by a solution for a smaller instance.

Exponential time algorithms

S. Gaspers

Introduction Exponential Time Algorithms Problem Definitions

Algorithm Design Techniques

Dynamic Programming across Subsets Branch & Reduce Memorization Treewidth Treewidth combined with Branch & Reduce Iterative Compression

Inclusion-Exclusion

Conclusion

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 ∽○へ⊙

Iterative Compression

- Compression step: Given a solution of size k + 1, compress it to a solution of size k or prove that there is no solution of size k
- Iteration step: Incrementally build a solution to the given instance by deriving solutions for larger and larger subinstances
- Seen a lot of success in Parameterized Complexity
- Examples: best known fixed parameter algorithms for (DIRECTED) FEEDBACK VERTEX SET, EDGE BIPARTIZATION, ALMOST 2-SAT, ...

・ロット (同) ・ (回) ・ (回)

Exponential time algorithms

S. Gaspers

Introduction Exponential Time Algorithms Problem Definitions

Igorithm Design echniques

across Subsets Branch & Reduce Memorization Treewidth Treewidth combined with Branch & Reduce Iterative Compression Inclusion-Exclusion

Iterative Compression

- Compression step: Given a solution of size k + 1, compress it to a solution of size k or prove that there is no solution of size k
- Iteration step: Incrementally build a solution to the given instance by deriving solutions for larger and larger subinstances
- Seen a lot of success in Parameterized Complexity
- Examples: best known fixed parameter algorithms for (DIRECTED) FEEDBACK VERTEX SET, EDGE BIPARTIZATION, ALMOST 2-SAT, ...

Exponential time algorithms

S. Gaspers

Introduction Exponential Time Algorithms Problem Definitions

lgorithm Design echniques

across Subsets Branch & Reduce Memorization Treewidth Treewidth combined with Branch & Reduce Iterative Compression

Inclusion-Exclusion

k-HITTING SET

k-HITTING SET (k-HS)

- Input: (U, S) where U is a universe U of n elements and S is a set of subsets of U such that for each S ∈ S, |S| ≤ k.
- Output: A hitting set of (U, S) of minimum size.
- A hitting set of (U, S) is set of elements H ⊆ U such that for each S ∈ S, S ∩ H ≠ Ø.

Exponential time algorithms

S. Gaspers

Introduction Exponential Time Algorithms Problem Definitions

Algorithm Design fechniques Dynamic Programming across Subsets Branch & Reduce Memorization Treewidth Treewidth combined with Branch & Reduce **Iterative Compression** Inclusion-Exclusion

Conclusion

COMP-4HS: Given a MINIMUM 4-HITTING SET instance (V, C) and a hitting set $H \subseteq V$ of C such that every hitting set of C has size at least |H| - 1, find a hitting set H^* of size |H| - 1 if one exists.

Exponential time algorithms

S. Gaspers

Introduction Exponential Time Algorithms Problem Definitions

Algorithm Design Techniques

Dynamic Programming across Subsets Branch & Reduce

Memorization

Treewidth

Treewidth combined with Branch & Reduce

Iterative Compression

Inclusion-Exclusion

Conclusion

COMP-4HS: Given a MINIMUM 4-HITTING SET instance (V, C) and a hitting set $H \subseteq V$ of C such that every hitting set of C has size at least |H| - 1, find a hitting set H^* of size |H| - 1 if one exists.

Go over all partitions (H', \overline{H}') of *H* such that $|H'| \ge 2|H| - n - 1$

Exponential time algorithms

S. Gaspers

Introduction Exponential Time Algorithms Problem Definitions

Igorithm Design echniques Dynamic Programming across Subsets

Branch & Reduce

Troowidth

Treewidth combined with Branch & Reduce

Iterative Compression

Conclusion

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ ● のへぐ

COMP-4HS: Given a MINIMUM 4-HITTING SET instance (V, C) and a hitting set $H \subseteq V$ of C such that every hitting set of C has size at least |H| - 1, find a hitting set H^* of size |H| - 1 if one exists.

Reject a partition if there is a $C_i \in C$ such that $C_i \subseteq \overline{H}'$

Exponential time algorithms

S. Gaspers

Introduction Exponential Time Algorithms Problem Definitions

Ilgorithm Design èchniques

across Subsets Branch & Reduce Memorization

Treewidth

Treewidth combined with Branch & Reduce

Iterative Compression

Inclusion-Exclusion

COMP-4HS: Given a MINIMUM 4-HITTING SET instance (V, C) and a hitting set $H \subseteq V$ of C such that every hitting set of C has size at least |H| - 1, find a hitting set H^* of size |H| - 1 if one exists.

Compute a minimum hitting set H'' for (V', C') where $V' = V \setminus H$ and $C' = \{C_i \cap V \mid C_i \in C \land C_i \cap H' = \emptyset\}$

Exponential time algorithms

S. Gaspers

Introduction Exponential Time Algorithms Problem Definitions

Algorithm Design fechniques Dynamic Programming across Subsets Branch & Reduce Memorization Treewidth Treewidth Combined with Branch & Reduce Iterative Compression Inclusion-Evolusion

Conclusion

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − のへで

COMP-4HS: Given a MINIMUM 4-HITTING SET instance (V, C) and a hitting set $H \subseteq V$ of C such that every hitting set of C has size at least |H| - 1, find a hitting set H^* of size |H| - 1 if one exists.

 $H^* = H' \cup H''$

Exponential time algorithms

S. Gaspers

Introduction Exponential Time Algorithms Problem Definitions

Algorithm Design Techniques

Dynamic Programming across Subsets Branch & Reduce

Memorization

Treewidth combined with Branch & Reduce

Iterative Compression

Inclusion-Exclusion

Conclusion

COMP-4HS: Given a MINIMUM 4-HITTING SET instance (V, C) and a hitting set $H \subseteq V$ of C such that every hitting set of C has size at least |H| - 1, find a hitting set H^* of size |H| - 1 if one exists.

If $|H^*| \leq |H| - 1$ then return H^*

Exponential time algorithms

S. Gaspers

Introduction Exponential Time Algorithms Problem Definitions

Algorithm Design Techniques

Dynamic Programming across Subsets Branch & Reduce

Memorization

Treewidth combined

Iterative Compression

Inclusion-Exclusion

Conclusion

• Algo considers only partitions into (H', \bar{H}') such that $|H'| \ge 2|H| - n - 1$. Nb. of partitions \le

$$\mathcal{O}\left(\max\left\{2^{2n/3}, \max_{2n/3 \le j \le n} \binom{j}{2j-n}\right\}\right) = \mathcal{O}\left(\max_{2n/3 \le j \le n} \binom{j}{2j-n}\right)$$

- The subinstances (V', C') where $V' = V \setminus H$ and $C' = \{C_i \cap V \mid C_i \in C \land C_i \cap H' = \emptyset\}$ are instances of MINIMUM 3-HITTING SET and we use a $\mathcal{O}(1.6278^n)$ algorithm [Wahlström '07] to solve them
- Total running time:²

$$\mathcal{O}\left(\max_{2n/3\leq j\leq n} \binom{j}{2j-n} 1.6278^{n-j}\right) = \mathcal{O}(1.8704^n)$$

 $_{42/50}^2$ maximum obtained for $j \approx 0.6824 \cdot n$

Exponential time algorithms

. Gaspers

Introduction Exponential Time Algorithms Problem Definitions

Algorithm Design Techniques Dynamic Programming across Subsets Branch & Reduce Memorization Treewidth Treewidth Treewidth combined with Branch & Reduce **Iterative Compression** Inclusion-Exclusion

• Algo considers only partitions into (H', \bar{H}') such that $|H'| \ge 2|H| - n - 1$. Nb. of partitions \le

$$\mathcal{O}\left(\max\left\{2^{2n/3}, \max_{2n/3 \le j \le n} \binom{j}{2j-n}\right\}\right) = \mathcal{O}\left(\max_{2n/3 \le j \le n} \binom{j}{2j-n}\right)$$

• The subinstances (V', C') where $V' = V \setminus H$ and $C' = \{C_i \cap V \mid C_i \in C \land C_i \cap H' = \emptyset\}$ are instances of MINIMUM 3-HITTING SET and we use a $\mathcal{O}(1.6278^n)$ algorithm [Wahlström '07] to solve them

Total running time:²

$$\mathcal{O}\left(\max_{2n/3\leq j\leq n} \binom{j}{2j-n} 1.6278^{n-j}\right) = \mathcal{O}(1.8704^n)$$

 $_{42/50}$ ²maximum obtained for $j \approx 0.6824 \cdot n$

Exponential time algorithms

6. Gaspers

Introduction Exponential Time Algorithms Problem Definitions

Ngorithm Design Techniques Dynamic Programming across Subsets Branch & Reduce Memorization Treewidth Treewidth combined with Branch & Reduce Iterative Compression Inclusion-Exclusion

• Algo considers only partitions into (H', \bar{H}') such that $|H'| \ge 2|H| - n - 1$. Nb. of partitions \le

$$\mathcal{O}\left(\max\left\{2^{2n/3}, \max_{2n/3 \le j \le n} \binom{j}{2j-n}\right\}\right) = \mathcal{O}\left(\max_{2n/3 \le j \le n} \binom{j}{2j-n}\right)$$

- The subinstances (V', C') where $V' = V \setminus H$ and $C' = \{C_i \cap V \mid C_i \in C \land C_i \cap H' = \emptyset\}$ are instances of MINIMUM 3-HITTING SET and we use a $\mathcal{O}(1.6278^n)$ algorithm [Wahlström '07] to solve them
- Total running time:²

$$\mathcal{O}\left(\max_{2n/3 \le j \le n} \binom{j}{2j-n} 1.6278^{n-j}\right) = \mathcal{O}(1.8704^n)$$

 $_{42/50}^{2}$ maximum obtained for $j \approx 0.6824 \cdot n$

Exponential time algorithms

6. Gaspers

Introduction Exponential Time Algorithms Problem Definitions

Vgorithm Design 'echniques Dynamic Programming across Subsets Branch & Reduce Memorization Treewidth Treewidth combined with Branch & Reduce Iterative Compression Inclusion-Exclusion

Minimum 4-Hitting Set: Iteration Step

- (V, C) instance of MINIMUM 4-HITTING SET with $V = \{v_1, v_2, \dots, v_n\}$
- $V_i = \{v_1, v_2, ..., v_i\}$ for i = 1 to n
- $C_i = \{C_j \in C \mid C_j \subseteq V_i\}$
- Note that |*H*_{i-1}| ≤ |*H*_i| ≤ |*H*_{i-1}| + 1 where *H_j* is a minimum hitting set of instance (*V_i*, *C_i*)

Exponential time algorithms

S. Gaspers

Introduction Exponential Time Algorithms Problem Definitions

Algorithm Design Fechniques

Dynamic Programming across Subsets Branch & Reduce Memorization

Treewidth combined with Branch & Reduce

Inclusion-Evolusion

Conclusion

Minimum 4-Hitting Set: Iteration Step

• (V, C) instance of MINIMUM 4-HITTING SET with $V = \{v_1, v_2, \dots, v_n\}$

•
$$V_i = \{v_1, v_2, \dots, v_i\}$$
 for $i = 1$ to n

- $C_i = \{C_j \in C \mid C_j \subseteq V_i\}$
- Note that |*H*_{i-1}| ≤ |*H*_i| ≤ |*H*_{i-1}| + 1 where *H_j* is a minimum hitting set of instance (*V_i*, *C_i*)

Exponential time algorithms

S. Gaspers

Introduction Exponential Time Algorithms Problem Definitions

llgorithm Design echniques

Dynamic Programming across Subsets Branch & Reduce Memorization

Treewidth

reewidth combined vith Branch & Reduce

Iterative Compression

Inclusion-Exclusion

Conclusion

(日)

Minimum 4-Hitting Set

Theorem 3

MINIMUM 4-HITTING SET can be solved in time $\mathcal{O}(1.8704^n)$.

 Can be generalized to the counting version of MINIMUM k-HITTING SET for any fixed k

Exponential time algorithms

6. Gaspers

Introduction Exponential Time Algorithms Problem Definitions

Igorithm Design echniques

Dynamic Programming across Subsets Branch & Reduce Memorization Treewidth Treewidth combined with Branch & Reduce Iterative Compression Inclusion-Evolution

Conclusion

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Minimum 4-Hitting Set

Theorem 3

MINIMUM 4-HITTING SET can be solved in time $\mathcal{O}(1.8704^n)$.

• Can be generalized to the counting version of MINIMUM *k*-HITTING SET for any fixed *k*

Exponential time algorithms

6. Gaspers

Introduction Exponential Time Algorithms Problem Definitions

Igorithm Design echniques

Dynamic Programming across Subsets Branch & Reduce Memorization Treewidth Treewidth combined with Branch & Reduce

Iterative Compression

Inclusion-Exclusion

Conclusion

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Outline

Introduction

- Exponential Time Algorithms
- Problem Definitions

Algorithm Design Techniques

- Dynamic Programming across Subsets
- Branch & Reduce
- Memorization
- Treewidth
- Treewidth combined with Branch & Reduce
- Iterative Compression
- Inclusion-Exclusion

Conclusion

Exponential time algorithms

6. Gaspers

Introduction Exponential Time Algorithms Problem Definitions

Algorithm Design Techniques

Dynamic Programming across Subsets

Branch & Heduce

Treewidth

Treewidth combined with Branch & Reduce Iterative Compression

Inclusion-Exclusion

Conclusion

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

The Principle of Inclusion-Exclusion

• Let $V_1, V_2, ..., V_m$ be finite sets

Then,

$$\left| \bigcup_{i=1}^{m} V_i \right| = \sum_{i=1}^{m} |V_i| - \sum_{1 \le i < j \le m} |V_i \cap V_j| + \sum_{1 \le i < j < k \le m} |V_i \cap V_j \cap V_k| - \dots$$

 Such a formula together with dynamic programming: best algorithm for COLORING Exponential time algorithms

6. Gaspers

Introduction Exponential Time Algorithms Problem Definitions

Algorithm Design Techniques Dynamic Programming across Subsets Branch & Reduce Memorization Treewidth Treewidth combined with Branch & Reduce Iterative Compression Inclusion-Exclusion

Conclusion

(日)

Inclusion-Exclusion for COLORING

Lemma 4 (Bjørkund, Husfeldt '06)

A graph G = (V, E) is k-colorable iff

$$c_k(G) = \sum_{X \subseteq V} (-1)^{|X|} s(X)^k > 0$$

where s(X) = number of independent sets not intersecting X.

Proof.

- $c_k(G) =$ nb. of ways to cover V with k i.s. (possibly overlapping)
- $s(X)^k =$ nb. of ways to choose k i.s. not intersecting X
- a set of k i.s. covering V is counted only in s(Ø)
- a set of k i.s. not covering V avoids some vertices U
 - hence counted once in every s(W) for every $W \subseteq U$
 - every non-empty set has as many even- as odd-sized subsets

Exponential time algorithms

6. Gaspers

Introduction Exponential Time Algorithms Problem Definitions

Algorithm Design Techniques Dynamic Programming across Subsets Branch & Reduce Memorization Treewidth Treewidth combined with Branch & Reduce Iterative Compression

Inclusion-Exclusion

Inclusion-Exclusion for COLORING (2)

- Dynamic programming to compute *s*(*X*) (number of independent sets not intersecting *X*)
- $s(X) = s(X \cup \{v\}) + s(X \cup N[v]) + 1, v \in V \setminus X$
- all s(X) computed in time $\mathcal{O}^*(2^n)$
- now, $c_k(G) = \sum_{X \subseteq V} (-1)^{|X|} s(X)^k$ can easily be computed
- to obtain the least k for which $c_k(G) > 0$, use binary search

Theorem 5 (Bjørkund, Husfeldt '06 & Koivisto '06)

COLORING can be solved in time $\mathcal{O}^*(2^n)$.

S. Gaspers

Introduction Exponential Time Algorithms Problem Definitions

Algorithm Design Techniques Dynamic Programming across Subets Branch & Reduce Memorization Treewidth Combined with Branch & Reduce Iterative Compression Inclusion:Exclusion

Conclusion

Conclusion

- We have seen some of the most important techniques in the design and analysis of exponential time algorithms
- Other techniques: Preprocessing Data, Local Search, Problem-Reduction, Combination of Techniques, Combination of Measures
- Also useful: Lower Bounds (especially for Branch & Reduce Algorithms)
- Classification among problems
- Properties of problems
- Q: big-Oh appropriate?
- Q: exponential space practical?

Exponential time algorithms

S. Gaspers

Introduction Exponential Time Algorithms Problem Definitions

Igorithm Design echniques Dynamic Programming across Subsets Branch & Reduce

Treewidth Treewidth combined with Branch & Reduce Iterative Compression

Conclusion

Thank you!

Questions?

Comments?

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへ⊙

Exponential time algorithms

6. Gaspers

Introduction Exponential Time Algorithms Problem Definitions

Algorithm Design lechniques

Dynamic Programming across Subsets Branch & Reduce Memorization Treewidth Treewidth combined with Branch & Reduce Iterative Compression