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NP-hard problems

no known polynomial time algorithm for any NP-hard
problem
belief: P 6= NP

ETH: 3-Sat cannot be solved in subexponential time
(thus many other problems cannot be solved in
subexponential time either)
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Dealing with NP-hard problems

Approaches to attack NP-hard problems
approximation algorithms
randomized algorithms
fixed parameter algorithms
exact exponential time algorithms
heuristics
restricting the inputs
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Exponential Time Algorithms

natural question in Algorithms:
design faster (worst-case analysis) algorithms for problems
might lead to practical algorithms

for small instances
subroutines for

(sub)exponential time approximation algorithms
randomized algorithms with expected polynomial run time

interesting combinatorics

6 / 50



Exponential time
algorithms

S. Gaspers

Introduction
Exponential Time
Algorithms

Problem Definitions

Algorithm Design
Techniques
Dynamic Programming
across Subsets

Branch & Reduce

Memorization

Treewidth

Treewidth combined
with Branch & Reduce

Iterative Compression

Inclusion-Exclusion

Conclusion

Solve a NP hard problem

exhaustive search
trivial method
try all possible solutions for a ground set on n elements
running times for problems in NP

SUBSET PROBLEMS: O∗(2n) 1

PERMUTATION PROBLEMS: O∗(n!)
PARTITION PROBLEMS: O∗(cn log n)

faster exact algorithms
for some problems, it is possible to obtain provably faster
algorithms
running times O(1.0892n),O(1.5086n),O(1.9977n)

1O∗(f (n)) ≡ O(f (n) · poly(n))7 / 50
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Exponential Time Algorithms in Practice

How large are the instances one can solve in practice?

Available time 1 s 1 min 1 hour 3 days 6 months
nb. of operations 230 236 242 248 254

n5 64 145 329 774 1756
n10 8 12 18 27 41

1.05n 426 510 594 681 765
1.1n 218 261 304 348 391
1.5n 51 61 71 82 92
2n 30 36 42 48 54
5n 12 15 18 20 23
n! 12 14 15 17 18
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Technology vs. Algorithms

Suppose a 2n algo enables us to solve instances up to size x
Faster processors

processor speed doubles after 18–24 months (according to
Moore’s law)
can solve instances up to size x + 1

Faster algorithm
design a 2n/2 = 1.4143n time algorithm
can solve instances up to size 2 · x
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Subset Problem: MAXIMUM INDEPENDENT

SET

MAXIMUM INDEPENDENT SET (MIS)

Input: A graph G = (V,E).
Output: An independent set of G of maximum cardinality.
I ⊆ V is an independent set if the vertices in I are pairwise
non-adjacent.

a b

c d e

f g h
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Permutation Problem: TRAVELING SALESMAN

TRAVELING SALESMAN PROBLEM (TSP)

Input: a set of n cities, the distance d(i, j) between every two
cities i and j.
Output: A tour visiting all cities with minimum total distance.
A tour is a permutation of the cities, starting and ending in
city 1.

Trivial algorithm checks all the permutations of the cities
Running time O(n!)
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Partition Problem: COLORING

COLORING (COL)

Input: A graph G = (V,E).
Output: A coloring of V with the smallest number of colors.
A coloring f : V → {1, 2, ..., k} is a function assigning colors
to V such that 2 adjacent vertices never receive the same
color.

a b

c d e

f g h
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Dynamic Programming across Subsets

very general technique
uses solutions of subproblems
typically stored in a table of exponential size
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Dynamic Programming for TSP

TRAVELING SALESMAN PROBLEM (TSP)

Input: a set of n cities {1, 2, ..., n}, the distance d(i, j)
between every two cities i and j.
Output: A tour visiting all cities with minimum total distance.
A tour is a permutation of the cities, starting and ending in
city 1.
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Dynamic Programming for TSP (2)

city i, non-empty subset of cities S ⊆ {2, 3, ..., n}
OPT[S; i] ≡ length of the shortest path starting in city 1, visits
all cities in S \ {i} and ends in i.
Then,

OPT[{i}; i] = d(1, i)
OPT[S; i] = min{OPT[S \ {i}; j] + d(j, i) : j ∈ S \ {i}}

For each subset S in in order of increasing cardinality,
compute OPT[S; i] for each i.
Final solution:

min
2≤j≤n

{OPT[{2, 3, ..., n}; j] + d(j, 1)}

17 / 50
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Dynamic Programming for TSP (3)

Theorem 1 (Held & Karp ’62)

TSP can be solved in time O(2nn2) = O∗(2n).

best known algo for TSP
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Branch & Reduce

Branch & Reduce Algorithm

Select a local configuration of the instance
Determine all possible values this part can take
Recursively solve smaller subproblems based on these
values
Return the best of these solutions

1 possible value: Reduction Rule (polynomial)
>1 possible value: Branching Rule (exponential)

20 / 50
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Branch & Reduce for MIS

MIS(G)

If there is a vertex v of degree at most 1, return
{v} ∪MIS(G− N[v])
Else if G contains k > 1 connected components G1, ...,Gk,
return

⋃k
i=1 MIS(Gi)

Else if the maximum degree of G is ≤ 2, solve the problem
in polynomial time
Else Select a vertex v of maximum degree
Return the largest set among

{MIS(G− v),
{v} ∪MIS(G− N[v])}
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Standard Running time analysis

The branching rule selects a vertex v of degree ≥ 3
It considers the subproblems
{MIS(G− v), {v} ∪MIS(G− N[v])}
In the 1st branch, 1 vertex is deleted, in the 2nd branch ≥ 4
T(n) is the running time of the algo for a graph on n vertices
T(n) ≤ T(n− 1) + T(n− 4)
xn ≤ xn−1 + xn−4

x4 − x3 − 1 = 0
x ≈ 1.380277
Running time: O(1.3803n)

22 / 50



Exponential time
algorithms

S. Gaspers

Introduction
Exponential Time
Algorithms

Problem Definitions

Algorithm Design
Techniques
Dynamic Programming
across Subsets

Branch & Reduce

Memorization

Treewidth

Treewidth combined
with Branch & Reduce

Iterative Compression

Inclusion-Exclusion

Conclusion

Measure & Conquer

Measure & Conquer: Technique to better analyze Branch &
Reduce algorithms
same algo, better running-time analysis
instead of using n as a measure, use sth. more clever
let’s use Measure & Conquer to analyze our algorithm for
MIS
we consider an instance with many vertices of small degree
as "easier"
⇒ assign weights to the vertices according to their degree
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Measure & Conquer (2)

Measure: µ(G) = w2n2 + w3n3 + w4n≥4

nx is the number of vertices of degree x

advantage when the degree of a vertex decreases
⇒ w2 ≤ w3 ≤ w4

We want µ(G) ≤ n⇒ w4 = 1
To simplify the analysis, suppose w4 − w3 ≤ w3 − w2 ≤ w2.
I.e. (i) is more advantageous to (i+1)

1 delete a vertex (of degree ≥ 2)
2 decrease the degree of a vertex from 3 to 2
3 decrease the degree of a vertex from 4 to 3

24 / 50



Exponential time
algorithms

S. Gaspers

Introduction
Exponential Time
Algorithms

Problem Definitions

Algorithm Design
Techniques
Dynamic Programming
across Subsets

Branch & Reduce

Memorization

Treewidth

Treewidth combined
with Branch & Reduce

Iterative Compression

Inclusion-Exclusion

Conclusion

Measure & Conquer (3)

Branch on a vertex of degree 3 with 3 neighbors of degree 3

v

1

2

3

T(µ) ≤ T(µ− 4w3) + T(µ+ 3w2 − 4w3)

Branch on a vertex of degree 3 with 2 neighbors of degree 3

v

1

2

3

T(µ) ≤ T(µ− w2 − 3w3) + T(µ− 3w3)

...
25 / 50
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Measure & Conquer (4)

Branch on a vertex of degree 4

v

1

2

3

4

T(µ) ≤ T(µ−4w2−w4) + T(µ+ 4w3−5w4)

Branch on a vertex of degree ≥ 5

v

1

2

3

4

5

T(µ) ≤ T(µ− 5w2 − w4) + T(µ− w4)
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Measure & Conquer (5)

System of recurrences

T(µ) ≤ max



T(µ− 4w3) + T(µ+ 3w2 − 4w3)
T(µ− w2 − 3w3) + T(µ− 3w3)
T(µ− 2w2 − 2w3) + T(µ− 3w2 − 2w3)
T(µ− 3w2 − w3) + T(µ− 6w2 − w3)
T(µ− 4w2 − w4) + T(µ+ 4w3 − 5w4)
T(µ− 5w2 − w4) + T(µ− 4w4)

optimal values for w2,w3 found by local search or
quasiconvex programming [Eppstein ’04]
⇒ w2 = 0.7533,w3 = 0.9262,w4 = 1
Final running time: O(1.3360n)
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Best Algorithms for MIS

O(1.1889n) [Robson ’01] very complicated,
computer-generated algorithm, exponential space
O(1.2210n) [Fomin, Grandoni, Kratsch ’06] very simple
algorithm, Measure & Conquer analysis, polynomial space
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Speed-up by memorization

Memorization
For each subgraph of size ≤ αn, compute an optimal solution
and store it in a DB
Add the following rule to the algorithm:

If |V| ≤ αn, retrieve the solution from the DB

Compute the optimal solution for small subgraphs takes
time

( n
αn

)
(using dynamic programming)

The new rule ensures that branching does not occur if the
graph has ≤ αn vertices
Running time: minα max{1.3803n−αn,

( n
αn

)
} = 1.3424n for

α = 0.0865
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Treewidth, Tree Decomposition

Treewidth (tw) measures how tree-like a graph is

a b

c d e

f g h

acd

abe

ade

deg egh

dgf

This graph has treewidth 2
Trees have treewidth 1
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Treewidth bound

Theorem 2 (Fomin, Gaspers, Saurabh, Stepanov)

For any ε > 0, there exists an integer nε such that for every graph
G with n > nε vertices,

pw(G) ≤ 1
6

n3 +
1
3

n4 +
13
30

n5 +
23
45

n6 + n≥7 + εn

where nx is the number of vertices of degree x in G.
Moreover, a path decomposition of the corresponding width can
be constructed in polynomial time.

tw(G) ≤ pw(G) for any graph G because every path
decomposition of a graph is a tree decomposition

33 / 50
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Treewidth Algorithm for MIS

Given a graph G and a tree decomposition for G of width k,
MIS can be solved in time 2knO(1)

(dynamic programming using the tree decomposition)
For graphs of maximum degree 3:
O∗(2n/6+εn) = O∗(1.1225n)
For graphs of maximum degree 4:
O∗(2n/3+εn) = O∗(1.2600n)
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Treewidth/Branch & Reduce Algorithm for MIS

MIS(G)

If there is a vertex v of degree at least 5,
Return the largest set among

{MIS(G− v),
{v} ∪MIS(G− N[v])}

Else (the maximum degree of G is ≤ 4)
compute a tree decomposition of G
solve the problem using this tree decomposition

T(n) ≤ T(n− 1) + T(n− 6)⇒ O∗(1.2852n)
Tree decomposition has width ≤ 1

3 n⇒ O∗(1.2600n)
Total: O∗(1.2852n)
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Iterative Compression

Core Idea
Inductive approach: Compute a solution for a problem instance
using the information provided by a solution for a smaller
instance.
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Iterative Compression

Compression step: Given a solution of size k + 1,
compress it to a solution of size k or prove that there is no
solution of size k

Iteration step: Incrementally build a solution to the given
instance by deriving solutions for larger and larger
subinstances

Seen a lot of success in Parameterized Complexity
Examples: best known fixed parameter algorithms for
(DIRECTED) FEEDBACK VERTEX SET, EDGE
BIPARTIZATION, ALMOST 2-SAT, . . .

39 / 50
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k-HITTING SET

k-HITTING SET (k-HS)

Input: (U,S) where U is a universe U of n elements and S is
a set of subsets of U such that for each S ∈ S, |S| ≤ k.
Output: A hitting set of (U,S) of minimum size.
A hitting set of (U,S) is set of elements H ⊆ U such that for
each S ∈ S, S ∩ H 6= ∅.

40 / 50



Exponential time
algorithms

S. Gaspers

Introduction
Exponential Time
Algorithms

Problem Definitions

Algorithm Design
Techniques
Dynamic Programming
across Subsets

Branch & Reduce

Memorization

Treewidth

Treewidth combined
with Branch & Reduce

Iterative Compression

Inclusion-Exclusion

Conclusion

Minimum 4-Hitting Set: Compression Step

COMP-4HS: Given a MINIMUM 4-HITTING SET instance (V, C)
and a hitting set H ⊆ V of C such that every hitting set of C has
size at least |H| − 1, find a hitting set H∗ of size |H| − 1 if one
exists.

H V \ H
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Minimum 4-Hitting Set: Compression Step

COMP-4HS: Given a MINIMUM 4-HITTING SET instance (V, C)
and a hitting set H ⊆ V of C such that every hitting set of C has
size at least |H| − 1, find a hitting set H∗ of size |H| − 1 if one
exists.

H V \ H

H′

H̄′

Go over all partitions (H′, H̄′) of H such that |H′| ≥ 2|H| − n− 1
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Minimum 4-Hitting Set: Compression Step

COMP-4HS: Given a MINIMUM 4-HITTING SET instance (V, C)
and a hitting set H ⊆ V of C such that every hitting set of C has
size at least |H| − 1, find a hitting set H∗ of size |H| − 1 if one
exists.

H V \ H

H′

H̄′

Reject a partition if there is a Ci ∈ C such that Ci ⊆ H̄′
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Minimum 4-Hitting Set: Compression Step

COMP-4HS: Given a MINIMUM 4-HITTING SET instance (V, C)
and a hitting set H ⊆ V of C such that every hitting set of C has
size at least |H| − 1, find a hitting set H∗ of size |H| − 1 if one
exists.

H V \ H

H′

H̄′

Compute a minimum hitting set H′′ for (V ′, C′) where V ′ = V \ H
and C′ = {Ci ∩ V | Ci ∈ C ∧ Ci ∩ H′ = ∅}
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Minimum 4-Hitting Set: Compression Step

COMP-4HS: Given a MINIMUM 4-HITTING SET instance (V, C)
and a hitting set H ⊆ V of C such that every hitting set of C has
size at least |H| − 1, find a hitting set H∗ of size |H| − 1 if one
exists.

H V \ H

H′

H̄′

H∗ = H′ ∪ H′′
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Minimum 4-Hitting Set: Compression Step

COMP-4HS: Given a MINIMUM 4-HITTING SET instance (V, C)
and a hitting set H ⊆ V of C such that every hitting set of C has
size at least |H| − 1, find a hitting set H∗ of size |H| − 1 if one
exists.

H V \ H

H′

H̄′

If |H∗| ≤ |H| − 1 then return H∗
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Minimum 4-Hitting Set: Compression Step (2)

Algo considers only partitions into (H′, H̄′) such that
|H′| ≥ 2|H| − n− 1.
Nb. of partitions ≤

O
(

max
{

22n/3, max
2n/3≤j≤n

(
j

2j− n

)})
= O

(
max

2n/3≤j≤n

(
j

2j− n

))

The subinstances (V ′, C′) where V ′ = V \ H and
C′ = {Ci ∩ V | Ci ∈ C ∧ Ci ∩ H′ = ∅} are instances of
MINIMUM 3-HITTING SET and we use a O(1.6278n)
algorithm [Wahlström ’07] to solve them
Total running time:2

O
(

max
2n/3≤j≤n

(
j

2j− n

)
1.6278n−j

)
= O(1.8704n)

2maximum obtained for j ≈ 0.6824 · n42 / 50
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Minimum 4-Hitting Set: Iteration Step

(V, C) instance of MINIMUM 4-HITTING SET with
V = {v1, v2, . . . , vn}
Vi = {v1, v2, . . . , vi} for i = 1 to n

Ci = {Cj ∈ C | Cj ⊆ Vi}
Note that |Hi−1| ≤ |Hi| ≤ |Hi−1|+ 1 where Hj is a minimum
hitting set of instance (Vi, Ci)
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Minimum 4-Hitting Set

Theorem 3

MINIMUM 4-HITTING SET can be solved in time O(1.8704n).

Can be generalized to the counting version of MINIMUM
k-HITTING SET for any fixed k
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The Principle of Inclusion-Exclusion

Let V1,V2, ...,Vm be finite sets
Then,∣∣∣∣∣

m⋃
i=1

Vi

∣∣∣∣∣ =
m∑

i=1

|Vi|−
∑

1≤i<j≤m

|Vi ∩ Vj|+
∑

1≤i<j<k≤m

|Vi ∩ Vj ∩ Vk|−...

Such a formula together with dynamic programming: best
algorithm for COLORING
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Inclusion-Exclusion for COLORING

Lemma 4 (Bjørkund, Husfeldt ’06)

A graph G = (V,E) is k-colorable iff

ck(G) =
∑
X⊆V

(−1)|X|s(X)k > 0

where s(X) = number of independent sets not intersecting X.

Proof.

ck(G) = nb. of ways to cover V with k i.s. (possibly overlapping)

s(X)k = nb. of ways to choose k i.s. not intersecting X

a set of k i.s. covering V is counted only in s(∅)
a set of k i.s. not covering V avoids some vertices U

hence counted once in every s(W) for every W ⊆ U
every non-empty set has as many even- as odd-sized subsets
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Inclusion-Exclusion for COLORING (2)

Dynamic programming to compute s(X) (number of
independent sets not intersecting X)
s(X) = s(X ∪ {v}) + s(X ∪ N[v]) + 1, v ∈ V \ X

all s(X) computed in time O∗(2n)
now, ck(G) =

∑
X⊆V(−1)|X|s(X)k can easily be computed

to obtain the least k for which ck(G) > 0, use binary search

Theorem 5 (Bjørkund, Husfeldt ’06 & Koivisto ’06)

COLORING can be solved in time O∗(2n).
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Conclusion

We have seen some of the most important techniques in the
design and analysis of exponential time algorithms
Other techniques: Preprocessing Data, Local Search,
Problem-Reduction, Combination of Techniques,
Combination of Measures
Also useful: Lower Bounds (especially for Branch & Reduce
Algorithms)
Classification among problems
Properties of problems
Q: big-Oh appropriate?
Q: exponential space practical?
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Thank you!

Questions? Comments?
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