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It is shown that the notion of conditional possibility can be consistently introduced in possibility
theory, in very much the same way as conditional expectations and probabilities are defined in
the measure- and integral-theoretic treatment of probability theory. I write down possibilistic
integral equations which are formal counterparts of the integral equations used to define condi-
tional expectations and probabilities, and use their solutions to define conditional possibilities.
In all, three types of conditional possibilities, with special cases, are introduced and studied.
I explain why, like conditional expectations, conditional possibilities are not uniquely defined,
but can only be determined up to almost everywhere equality, and I assess the consequences of
this nondeterminacy. I also show that this approach solves a number of consistency problems,
extant in the literature.

INDEX TERMS: Possibility integral, integral equation, conditional possibility.



1 CONDITIONAL POSSIBILITY: A SURVEY

This is the second in a series of three papers on the measure- and integral-theoretic aspects of
possibility theory. Here I specifically deal with conditional possibility. I shall make ample use of
the results, definitions and notational conventions, given in the first paper of this series, which
will be referred to as Part I.

The notion of conditional possibility for variables was, albeit under a different name, first
introduced by Zadeh [1978]. It was later refined by Hisdal [1978]. Both authors drew their
inspiration from the notion of conditional probability in probability theory. Nguyen [1978]
published his view on the subject simultaneously. Dubois and Prade [1984] also refined Zadeh’s
work. More recently [Dubois et al., 1994], [Dubois and Prade, 1985, 1988, 1990] they have also
studied conditional possibility for events, a topic which has also received attention from Ramer
[1989].

In this section, I give a brief account of the most important contributions of these authors
to the field of conditional possibility. This will give the reader an idea of what has been accom-
plished in this domain, and of the problems and difficulties that still remain. It will also help
reveal the relevance and importance of the measure- and integral-theoretic approach described
in this paper. In order to make this survey as tidy as possible, I shall not be using the diversity
of notations and terminology employed by the above-mentioned scholars. I prefer to reformulate
their results using a uniform notation and nomenclature, already established in Part I. At the
same time, I do not present a literal and explicit account of their work, but restrict myself to
the main ideas.

1.1 Zadeh’s Approach

Zadeh starts with two universes X1 and X2. He considers ξ1 and ξ2 as variables taking values in
X1 and X2 respectively. (ξ1, ξ2) is also a variable, which assumes values in the universe X1×X2.
Information about the values that (ξ1, ξ2) takes in X1 ×X2 is given by the ([0, 1],≤)-possibility
measure1 Π(ξ1,ξ2) on (X1×X2, ℘(X1×X2)), with distribution π(ξ1,ξ2). For any (x1, x2) in X1×X2,
π(ξ1,ξ2)(x1, x2) is the (L,≤)-possibility that (ξ1, ξ2) assumes the value (x1, x2). Π(ξ1,ξ2) is called
by Zadeh the binary possibility distribution of (ξ1, ξ2). He calls π(ξ1,ξ2) the binary possibility
distribution function of (ξ1, ξ2). Hisdal uses in this context the adjective ‘joint ’ instead of
‘binary’. Zadeh furthermore defines the ([0, 1],≤)-possibility measure Πξ1 on (X1, ℘(X1)) with
distribution πξ1 as

(∀A1 ∈ ℘(X1))(Πξ1(A1) = Π(ξ1,ξ2)(A1 ×X2)) (1)

or equivalently

(∀x1 ∈ X1)

(

πξ1(x1) = sup
x2∈X2

π(ξ1,ξ2)(x1, x2)

)

; (2)

and the ([0, 1],≤)-possibility measure Πξ2 on (X2, ℘(X2)) with distribution πξ2 as

(∀A2 ∈ ℘(X2))(Πξ2(A2) = Π(ξ1,ξ2)(X1 ×A2)) (3)

1In Zadeh’s work, no mention is made of the notion of measurability. In my terminology, this means that
he implicitly considers the power sets ℘(X1), ℘(X2) and ℘(X1 × X2) as ample fields of measurable sets on the
respective universes X1, X2 and X1 ×X2.
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or equivalently

(∀x2 ∈ X2)

(

πξ2(x2) = sup
x1∈X1

π(ξ1,ξ2)(x1, x2)

)

. (4)

Πξ1 and Πξ2 are called by Zadeh (and Hisdal and Nguyen) the marginal possibility distributions of
ξ1 and ξ2 respectively. πξ1 and πξ2 are given the name marginal possibility distribution function.
The possibility measure Πξk contains information about the values which ξk assumes in Xk,
k = 1, 2, (see also Part I, section 4).

Furthermore, Zadeh calls the variables ξ1 and ξ2 noninteractive iff

Π(ξ1,ξ2) = Πξ1 ×min Πξ2 (5)

or equivalently

(∀(x1, x2) ∈ X1 ×X2)(π(ξ1,ξ2)(x1, x2) = min(πξ1(x1), πξ2(x2))) (6)

where min is the minimum operator on the real unit interval [0, 1], and Πξ1 ×min Πξ2 the min-
product possibility measure of Πξ1 and Πξ2 (see Part I, section 8). According to Zadeh, this
noninteractivity is analogous to the notion of stochastic independence in probability theory.

Finally, Zadeh introduces for any (y1, y2) in X1 ×X2 the following mappings

πξ1|ξ2(· | y2) : X1 → [0, 1] : x1 7→ π(ξ1,ξ2)(x1, y2)

πξ2|ξ1(· | y1) : X2 → [0, 1] : x2 7→ π(ξ1,ξ2)(y1, x2),

and calls them respectively the conditioned possibility distribution function of ξ1 if ξ2 = y2
is given, and the conditioned possibility distribution function of ξ2 if ξ1 = y1 is given. These
conditioned possibility distribution functions are simply defined as partial mappings of the binary
– or joint – possibility distribution function. This implies that the concept of a conditioned
possibility distribution function plays a part in Zadeh’s theory that is not completely analogous
with the one played by conditional probability distribution functions (or density or frequency
functions, see Part I, section 5) in probability theory [Burrill, 1972], as Zadeh himself has rightly
remarked. In Hisdal’s view, Zadeh does not closely follow the analogy with probability theory,
because this would lead to apparent incompatibilities with his theory of approximate reasoning
[Zadeh, 1978]. Let us, for the sake of convenience, call this difficulty ‘Zadeh’s problem’. A
detailed explanation of this problem, and how these incompatibilities come about, would lead us
too far astray. For a thorough discussion of this problem, I refer to Hisdal’s work on the subject
[Hisdal, 1987].

1.2 Hisdal’s Approach

Hisdal attempts to restore the analogy between possibility and probability, while at the same
time securing Zadeh’s theory of approximate reasoning. Exploiting the analogy with what can
be done in probability theory with conditional frequency functions, she proposes to define the
conditioned possibility distribution functions using the following equations:

{

(∀(x1, x2) ∈ X1 ×X2)(π(ξ1,ξ2)(x1, x2) = min(πξ1|ξ2(x1 | x2), πξ2(x2)))

(∀(x1, x2) ∈ X1 ×X2)(π(ξ1,ξ2)(x1, x2) = min(πξ2|ξ1(x2 | x1), πξ1(x1))).
(7)

2



Remark that the operator min on [0, 1] plays in these equations the same role as the product
operator in probability theory; see in this respect also (5) and (6). These equations have the
following solution(s), for any (x1, x2) in X1 ×X2:

πξ1|ξ2(x1 | x2) ∈







{π(ξ1,ξ2)(x1, x2)} ; πξ2(x2) > π(ξ1,ξ2)(x1, x2)
[

π(ξ1,ξ2)(x1, x2), 1
]

; πξ2(x2) = π(ξ1,ξ2)(x1, x2)
(8)

and analogously for πξ2|ξ1(x2 | x1). Hisdal uses for the mappings πξ1|ξ2(· | x2) and πξ2|ξ1(· | x1) the
adjective ‘conditional ’ instead of ‘conditioned’, probably to make clear that the analogy between
probability and possibility has been restored. From (8) we deduce that Hisdal’s equations (7)
do not exclude Zadeh’s definition, but rather extend it. It should indeed be noted that Zadeh’s
choice, given by

(∀(x1, x2) ∈ X1 ×X2)(πξ1|ξ2(x1 | x2) = πξ2|ξ1(x2 | x1) = π(ξ1,ξ2)(x1, x2)),

is always a solution of Hisdal’s defining equations2. Hisdal furthermore shows that this (happy)
fact provides a solution for Zadeh’s problem. On the other hand, she is confronted with another
difficulty, which we shall baptise ‘Hisdal’s problem’. Besides Zadeh’s noninteractivity of ξ1
and ξ2, she also introduces the notion of possibilistic independence, which she claims to be a
possibilistic counterpart of the stochastic independence of real stochastic variables. She calls
the variable ξ1 possibilistically independent of the variable ξ2 iff

(∀(x1, x2) ∈ X1 ×X2)(πξ1|ξ2(x1 | x2) = πξ1(x1)) (9)

which is equivalent to

(∀x1 ∈ X1)(πξ1|ξ2(x1 | ·) = πξ1(x1)), (10)

where, of course, for any x1 in X1,

πξ1|ξ2(x1 | ·) : X2 → [0, 1] : x2 7→ πξ1|ξ2(x1 | x2)

πξ1(x1) : X2 → [0, 1] : x2 7→ πξ1(x1).

Hisdal’s difficulty is now the following: when ξ1 is possibilistically independent of ξ2, it follows
that ξ1 and ξ2 are noninteractive, but the reverse is not necessarily true. Whereas, still according
to Hisdal, the counterpart of the reverse implication is valid in probability theory. In this way,
a discrepancy between possibility and probability theory creeps in, and Hisdal is forced to
distinguish between Zadeh’s noninteractivity and her own notion of possibilistic independence.

It is my conviction that the distinction brought to life by Hisdal is to a great extent artificial.
On the one hand, if we want to define possibilistic independence in an unambiguous way using
Eq. (9), the number πξ1|ξ2(x1 | x2) must be uniquely defined for any (x1, x2) in X1×X2. On the
other hand, Hisdal defines the numbers πξ1|ξ2(x1 | x2) as solutions of the Eqs. (7), which in some
cases have no unique solution, as Eq. (8) tells us. This simply implies that Hisdal’s definition
of possibilistic independence makes little sense.

2Zadeh’s choice could be considered as the most restrictive (smallest) of all possible solutions of Hisdal’s
equations.
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1.3 Dubois and Prade’s Work

Dubois and Prade [1984] define conditional possibility for variables using equations which are
more general than Hisdal’s, because they substitute for the operator min in (7) an arbitrary
isotonic operator ∧. on [0, 1] which satisfies a number of additional boundary conditions. This
leads them to consider the following defining equations for the conditional possibility distribution
functions

{

(∀(x1, x2) ∈ X1 ×X2)(π(ξ1,ξ2)(x1, x2) = πξ2(x2) ∧. πξ1|ξ2(x1 | x2))

(∀(x1, x2) ∈ X1 ×X2)(π(ξ1,ξ2)(x1, x2) = πξ1(x1) ∧. πξ2|ξ1(x2 | x1)).
(11)

The attempt they make to integrate the notion of conditional possibility into the theory of
approximate reasoning is essentially similar to Hisdal’s. I shall not discuss this work in more
detail, but instead refer the interested reader to the original paper [Dubois and Prade, 1984].

In various publications [Dubois et al., 1994], [Dubois and Prade, 1985, 1988, 1990] Dubois
and Prade also consider conditional possibilities of events, or propositions. Given two events A
and B, and a ([0, 1],≤)-possibility measure Π defined on the event space ℘(X), they follow and
extend Hisdal’s original idea in defining the conditional possibility Π(A | B) of A given B as a
solution of the equation

Π(A ∩B) = Π(A | B) ∗Π(B), (12)

where ∗ is in general a triangular norm (see Part I, section 2). They furthermore note that
for ∗ = min this equation not necessarily has a unique solution, and invoke what they call the
principle of minimum specificity to justify their choice of the maximal solution:

Π(A | B) =

{

Π(A ∩B) ; Π(A ∩B) < Π(B)
1 ; Π(A ∩B) = Π(B).

They also mention that Shafer considers the case ∗ = algebraic product, which of course yields
Π(A | B) = Π(A ∩B)/Π(B), whenever Π(B) 6= 0, a formula that is consistent with Dempster’s
rule of combination [Shafer, 1976].

Ramer [1989] uses a comparable approach. He also considers Eq. (12) with ∗ = min as a
defining equation for conditional possibilities of events, and imposes either an extra continuity
condition or a principle of minimal information distance in order to obtain a unique solution.

1.4 Nguyen’s Approach

Nguyen uses a different approach to define conditional possibility distribution functions of vari-
ables. I shall restrict myself here to briefly explaining his way of arriving at the numbers
π(ξ1|ξ2)(x1, x2), with (x1, x2) in X1 × X2. Nguyen does not use Eqs. (7) for the definition of
conditional possibility, but rather looks for a [0, 1]×]0, 1]−R+-mapping α satisfying, for any x1
in X1 and x2 in X2:

(i) π(ξ1,ξ2)(x1, x2) · α(πξ1(x1), πξ2(x2)) ∈ [0, 1];

(ii) min(πξ1(x1), πξ2(x2)) · α(πξ1(x1), πξ2(x2)) = πξ1(x1).
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He leaves the question as to what should be done if πξ2(x2) = 0 unanswered. Nguyen uses the
mapping α as a normalization factor that the joint possibility distribution function must be
multiplied with in order to obtain the conditional possibility distribution function:

(∀(x1, x2) ∈ X1 ×X2)(π(ξ1|ξ2)(x1 | x2) = π(ξ1,ξ2)(x1, x2) · α(πξ1(x1), πξ2(x2))).

He proves that the only solution α for which, for any b in ]0, 1], the partial mapping α(·, b) is
continuous, is given by

(∀(a, b) ∈ [0, 1]×]0, 1])



α(a, b) =







1 ; a ≤ b
a
b

; a > b



 .

Condition (ii) ensures that whenever ξ1 and ξ2 are noninteractive, we have for any (x1, x2)
in X1 ×X2 that πξ1|ξ2(x1 | x2) = πξ1(x1), which makes Hisdal’s possibilistic independence and
Zadeh’s noninteractivity coincide. Nguyen finds for any (x1, x2) in X1×X2 for which πξ2(x2) > 0:

πξ1|ξ2(x1 | x2) =











π(ξ1,ξ2)(x1, x2) ; πξ1(x1) ≤ πξ2(x2)

π(ξ1,ξ2)(x1, x2)
πξ1(x1)
πξ2(x2)

; πξ1(x1) > πξ2(x2).
(13)

Again, what happens if πξ2(x2) = 0 is not made clear. Nguyen also shows that his conditional
possibilities satisfy the following expression:

(∀x1 ∈ X1)

(

πξ1(x1) = sup
x2∈X2

min(πξ1|ξ2(x1 | x2), πξ2(x2))

)

,

which, by the way, can also be obtained by taking the supremum on both sides of one of the
Eqs. (7), also taking into account (2).

It seems to me that Nguyen’s approach, although mathematically correct, has a few short-
comings as far as its justification is concerned. First of all, it is somewhat artificial and lacking
in simplicity. In my opinion, the correction factor α(πξ1(x1), πξ2(x2)) that π(ξ1,ξ2)(x1, x2) must
be multiplied with in order to obtain πξ1|ξ2(x1 | x2) – why introduce a second (product) operator
besides min, that is unrelated to it?–, is to some extent drawn in. Nguyen defends his approach
by arguing that an analogous ‘correction factor’ also exists in probability theory. Indeed, to
give an example, the joint density function of two continuous stochastic variables Y and Z is
divided by the marginal density function of Z in order to obtain the conditional density function
of Y w.r.t. Z (for a more rigorous formulation, see, for instance, [Burrill, 1972] Example 15-3B,
Eq. (15)). But, the division is in this probabilistic case the inverse operation of the product
operator that plays a very important part in probability theory. Therefore, if we must introduce
a correction factor in the possibilistic case, would it not be more straightforward and consistent
to use the ‘inverse operation’ of the operator min that also in Nguyen’s approach takes the place
of the product operator? Should we not, in that case, on the basis of Part I, Example 2.3 and of
a consistent analogy with probability theory, expect the following expression for πξ1|ξ2(x1 | x2):

πξ1|ξ2(x1 | x2) = π(ξ1,ξ2)(x1, x2)4minπξ2(x2)

=

{

π(ξ1,ξ2)(x1, x2) ; πξ2(x2) > π(ξ1,ξ2)(x1, x2)
1 ; πξ2(x2) = π(ξ1,ξ2)(x1, x2),

(14)

which is in perfect agreement with (8)?
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1.5 A Solution for Hisdal’s Problem

It should also be noted that Nguyen obtains unique values for his conditional possibilities, and
at the same time solves Hisdal’s problem. Since I have already indicated above that I am not
entirely satisfied with Nguyen’s approach, let me briefly indicate here how I propose to solve
Hisdal’s problem. The approach I want to defend here – and will work out in more detail in the
rest of this paper, and in Part III of this series – is based upon two observations.

For one thing, it should not really be a problem that the Eqs. (7) do not uniquely determine
the conditional possibility distribution functions. In probability theory, conditional probability
distribution functions are not uniquely determined either, but rather are unique in the sense of
almost everywhere equality3 [Burrill, 1972]. We may therefore expect something analogous for
conditional possibility distribution functions. Indeed, if for any (x1, x2) in X1×X2 we represent
by π1

ξ1|ξ2(x1 | x2) and π2
ξ1|ξ2(x1 | x2) two arbitrary solutions of the first equation of (7), then

(∀(x1, x2) ∈ X1 ×X2)(min(π1
ξ1|ξ2(x1 | x2), πξ2(x2)) = min(π2

ξ1|ξ2(x1 | x2), πξ2(x2)))

or equivalently, using the notations introduced in Part I, section 6),

(∀x1 ∈ X1)
(

π1
ξ1|ξ2(x1 | ·)

(Πξ2
,min)

= π2
ξ1|ξ2(x1 | ·)

)

.

In this sense, we see that the solutions of (7) are only unique in the sense of (Πξ2 , min)-
equivalence. We conclude that the analogy between probability and possibility theory is pre-
served, also as far as the nonuniqueness of the solutions of (7) is concerned.

Furthermore, it is important to note that it is not at all necessary that conditional possibilities
should be uniquely determined in order to introduce a form of possibilistic independence and at
the same time solve Hisdal’s problem. We need only change Hisdal’s original definition of
possibilistic independence in such a way that it takes this nonuniqueness into account. That ξ1
and ξ2 are noninteractive is indeed equivalent to

(∀(x1, x2) ∈ X1 ×X2)(π(ξ1,ξ2)(x1, x2) = min(πξ1(x1), πξ2(x2)))

and, taking into account (7), also with

(∀(x1, x2) ∈ X1 ×X2)(min(πξ1|ξ2(x1 | x2), πξ2(x2)) = min(πξ1(x1), πξ2(x2)))

or equivalently, with the notation λ for the constant X − {λ}-mapping, introduced in Part I,
section 2,

(∀x1 ∈ X1)(πξ1|ξ2(x1 | ·)
(Πξ2

,min)

= πξ1(x1)). (15)

A completely analogous result can be derived in probability theory (see, for instance, [Burrill,
1972] Theorem 15-3C for probability distribution functions), where the (Πξ2 , min)-equivalence is
replaced by the analogous almost everywhere equality, and therefore not by the ordinary point-
wise equality of mappings. If we start from (15) instead of (9) for the definition of possibilistic
independence, it turns out that Zadeh’s noninteractivity and this new form of possibilistic inde-
pendence are indeed equivalent notions. At the same time, the analogy with probability theory
is followed more closely than was the case with Hisdal’s definition.

3It is easily verified that something similar holds for density and frequency functions.
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Hisdal’s problem is therefore an artificial one, which could arise only because a probabilistic
starting point was chosen for extension by analogy that was not entirely correct. This exposes
the sore spot of some of the existing measure-theoretic accounts of conditional possibility: they
are inspired by the analogy with conditional probability, but within possibility theory itself do
not have the necessary measure- and integral-theoretic apparatus to fully exploit this analogy.
It is my aim in this paper and its sequel to develop a theory of conditional possibility and
conditional independence using the analogy with the theory of probability. In doing so, I shall
use the measure- and integral-theoretic techniques and notions developed in Part I. In this way,
the theory of conditional possibility and possibilistic independence, existing in the literature, is
embedded in a broad measure- and integral-theoretic context, and at the same time corrected in
certain places, as indicated above. This will serve as further evidence for the claim that the use
of possibility integrals allows a uniform and consistent construction of a theory of possibility,
and the harmonious unification of many results extant in the literature.

1.6 Conditional Probability

The course of reasoning followed in this paper is rather abstract, and draws its inspiration from
the classical introduction of conditional probability in a measure- and integral-theoretic con-
text. Let me very succinctly summarize this procedure. In Kolmogorov’s probability theory, the
starting point of the abstract measure- and integral-theoretic approach is a particular integral
equation in a real stochastic variable. Solutions of this equation are given the name ‘conditional
expectation’. Conditional probabilities are then defined as special cases of conditional expec-
tations. For both notions, a number of properties can be proven that justify the use of this
terminology. I also want to point out that there exist different types of conditional expectations
and probabilities, and that each type is defined using a different integral equation. For a thor-
ough account of the measure- and integral-theoretic approach to conditional expectation and
probability, I refer for instance to [Burrill, 1972].

1.7 Sugeno’s Approach

As far as I know, Sugeno is the only one who has used a purely measure- and integral-theoretic
approach to the introduction of conditionality in what could be very generally called the theory
of fuzzy sets. In his doctoral dissertation [Sugeno, 1974], he introduces the notion of a conditional
fuzzy measure, using a certain type of integral equation. Let me give a brief account of his course
of reasoning. For a more detailed account of this approach, and explicit definitions of the notions
mentioned below, I refer to [Sugeno, 1974].

Let (X1,S1, vξ1) and (X2,S2, vξ2) be fuzzy measure spaces, where the fuzzy measure vξk

contains information about the values a variable ξk takes in the universe Xk, k = 1, 2. Any
solution of the integral equation

(∀A1 ∈ S1)
(

–
∫

X2

f ◦ vξ2 = vξ1(A1)
)

(16)

in the S2-measurable ([0, 1],≤)-fuzzy set f in X2, is given the notation ρ(A1 | ·). This means
that

(∀A1 ∈ S1)
(

–
∫

X2

ρ(A1 | ·) ◦ vξ2 = vξ1(A1)
)

. (17)
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For any x2 in X2 the S1 − [0, 1]-mapping ρ(· | x2) is called by Sugeno the conditional fuzzy
measure of X2 to X1. He furthermore shows that these conditional fuzzy measures satisfy
analogous properties – in the sense of almost everywhere equality – as his fuzzy measures, which
justifies his terminology.

1.8 My Approach to Conditional Possibility

For the introduction of conditional possibility in this paper I shall not draw on Sugeno’s work
about conditional fuzzy measures, which, to my knowledge, up to now has not been worked out
in full detail. My only source of inspiration will be the existing and fully developed measure-
theoretic account of conditional probability. In what follows, I introduce three related types of
conditional possibility. For each type, I start with a particular integral equation in a fuzzy vari-
able. The fuzzy variables which solve these integral equations are given the name ‘conditional
possibility ’, mainly because they satisfy a number of properties which cannot but remind us of
possibility measures. The distinction that is made in probability theory between conditional
expectation and conditional probability can in principle also be maintained here as a distinction
between generalized (conditional) possibility of fuzzy events and ordinary (conditional) possi-
bility of ordinary events, where the latter can be viewed as a special case of the former (see
also Part I, section 3). Since I have chosen for a uniform approach and nomenclature for both
ordinary and fuzzy events, I shall in both cases simply use the term ‘conditional possibility’.

1.9 An Overview of This Paper

Starting with a first type of integral equation, the course of reasoning in section 2 leads to the
introduction and study of the conditional possibility of a fuzzy variable (fuzzy event) – or in
particular of a measurable set (event) – given an ample field of sets. In section 3 a second
type of integral equation allows the definition of the conditional possibility of a fuzzy variable,
and in particular of a measurable set, given that a second fuzzy variable assumes a particular
value. From this second brand of conditional possibility, I deduce a number of special cases:
the conditional possibility that a fuzzy variable assumes a particular value given that a second
fuzzy variable assumes a certain value; the conditional possibility of a measurable set given a
second measurable set, etc. The two above-mentioned main types of conditional possibility of
fuzzy variables and measurable sets are, from a formal point of view, fairly analogous to two
well-known types of conditional probability of real stochastic variables and measurable sets.

In section 4 I extend the treatment of the conditional possibility of fuzzy variables and
measurable sets towards that of possibilistic variables in general. This allows me to incorporate
the existing results in the field of conditional possibility into a measure- and integral-theoretic
treatment.

In order to allow the reader to follow the analogy between this approach and the probabilistic
one, I have given in what follows, where possible and suitable, explicit references to the relevant
probabilistic literature.

Let me conclude this general overview with a number of general notational conventions,
valid in the rest of this paper, unless explicitly stated to the contrary. By P we shall denote
a triangular seminorm on (L,≤), such that (L,≤, P ) is a complete lattice with t-seminorm. In
addition, P is everywhere assumed to be weakly left-invertible (see Part I, section 2).
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2 CONDITIONAL POSSIBILITY OF FUZZY EVENTS AND
EVENTS: TYPE 1

In this section, let us denote by (X,R, Π) a (L,≤)-possibility space. The possibility distribution
of Π is denoted by π. D is an ample field on X that is coarser than R, or, in other words,
D ⊆ R.

In the first theorem, we discuss the existence and uniqueness of solutions of the integral equa-
tion (18), which will further on lead to the introduction of a first type of conditional possibility
(probabilistic counterpart: [Burrill, 1972] section 15-1, Eq. (4)).

Theorem 2.1. The restriction Π|D of Π to D is a (L,≤)-possibility measure on (X,D). Fur-
thermore, let h be a (L,≤)-fuzzy variable in (X,R). Then there exists a (L,≤)-fuzzy variable g
in (X,D) satisfying

(∀D ∈ D)
(

(P ) –
∫

D
gd(Π|D) = (P ) –

∫

D
hdΠ

)

. (18)

Any solution g of this integral equation is unique in the sense of (Π|D, P )-equivalence.

Proof. It is readily verified that Π|D is a (L,≤)-possibility measure on (X,D). We shall therefore
show that there exists a X −L-mapping g that is D-measurable and satisfies (18). Consider the
R− L-mapping Ψ defined as

(∀E ∈ R)
(

Ψ(E) = (P ) –
∫

E
hdΠ

)

.

Then, taking into account Part I, Proposition 7.1, Ψ is a (L,≤)-possibility measure on (X,R).
The restriction Φ = Ψ|D of Ψ to the ample field D is of course a (L,≤)-possibility measure on
(X,D). The integral equation (18) can now also be written as

(∀D ∈ D)
(

(P ) –
∫

D
gd(Π|D) = Φ(D)

)

.

Furthermore, we have for any D inD, taking into account Part I, Eq. (5) and theR-measurability
of h, that

Φ(D) = sup
x∈D

P (h(x), π(x)) ≤ sup
x∈D

π(x) = Π(D) = (Π|D)(D).

Since P is assumed to be weakly invertible, the existence of the solution g and its uniqueness in
the sense of (Π|D, P )-equivalence is implied by Part I, Theorem 7.2.

This theorem paves the way for the following definition.

Definition 2.2. Let h be a (L,≤)-fuzzy variable in (X,R). Any member of the equivalence
class of solutions of the integral equation (18) in the (L,≤)-fuzzy variable g in (X,D) is denoted
by Π(h | D). This means that

(∀D ∈ D)
(

(P ) –
∫

D
Π(h | D)d(Π|D) = (P ) –

∫

D
hdΠ

)

.
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Π(h | D) is called the conditional (L,≤, P )-possibility of h when D is given. For any A in R,
Π(χA | D) is also written as Π(A | D) and is called the conditional (L,≤, P )-possibility of A
when D is given. Taking into account Part I, Eqs. (8) and (9), this means that

(∀D ∈ D)
(

(P ) –
∫

D
Π(A | D)d(Π|D) = Π(D ∩A)

)

.

If, for whatever reason, we do not want to mention the structure (L,≤, P ) explicitly, we simply
use the name ‘conditional possibility’ instead of ‘conditional (L,≤, P )-possibility’.

In the proposition below, we derive a formula that will allow us to calculate such conditional
possibilities explicitly. The left-residuals, discussed briefly in Part I, section 2, and more in detail
in [De Cooman and Kerre, 1994], play the same role here as the division in probability theory.

Proposition 2.3. Let h be a (L,≤)-fuzzy variable in (X,R) and let A be an element of R.
Then

(i) Π(h | D)
(Π|D,P )

= (P ) –
∫

[ · ]D
hdΠ CP Π([ · ]D);

(ii) Π(A | D)
(Π|D,P )

= Π([ · ]D ∩A) CP Π([ · ]D).

The mappings on the right hand sides of (i) and (ii) are also the greatest members, w.r.t. the
relation v on GR(L,≤)(X), of the respective equivalence classes of the equivalence relation

(Π|D,P )
=

they belong to. In other words, they are the greatest solutions of the corresponding integral
equations.

Proof. Statement (ii) is an immediate consequence of (i), taking into account Part I, Eqs. (8)
and (9). It therefore suffices to prove (i). Let g be any (L,≤)-fuzzy variable in (X,D). It is
easily verified that the integral equation (18) is equivalent to

(∀x ∈ X)

(

P (g(x), Π([x ]D)) = sup
y∈[ x ]D

P (h(y), π(y))

)

. (19)

Since P is assumed to be weakly invertible, and furthermore for any x in X

sup
y∈[ x ]D

P (h(y), π(y)) ≤ sup
y∈[ x ]D

π(y) = Π([ x ]D),

the proof is complete if we take into account Part I, Propositions 2.1 and 2.2.

In Theorem 2.4 we see that conditional possibilities behave in a certain sense as ordinary
normal possibility measures (probabilistic counterpart: [Burrill, 1972] Theorem 15-3A). I want
to stress here that the ‘equalities’ which appear in this theorem are (Π|D, P )-equivalences of
fuzzy variables in (X,D). Indeed, the conditional possibilities introduced in Definition 2.2 are
fuzzy variables. Since these are only defined up to (Π|D, P )-equivalence, it is absolutely normal
that the equality of two conditional possibilities is expressed by means of (Π|D, P )-equality of
fuzzy variables instead of the normal pointwise equality of mappings.

Theorem 2.4. (i) Π(∅ | D)
(Π|D,P )

= 0L and Π(X | D)
(Π|D,P )

= 1L.
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(ii) Let {hj | j ∈ J} be a family of elements of GR(L,≤)(X). Then

Π(sup
j∈J

hj | D)
(Π|D,P )

= sup
j∈J

Π(hj | D).

(iii) Let {Aj | j ∈ J} be a family of elements of R. Then

Π(
⋃

j∈J

Aj | D)
(Π|D,P )

= sup
j∈J

Π(Aj | D).

Proof. Statement (i) immediately follows from Part I, Corollary 6.5. Statement (iii) follows
from (ii). Let us therefore prove (ii). To this end, let D be any element of D. We then have by
definition that, taking into account Part I, Eq. (11),

(P ) –
∫

D
Π(sup

j∈J
hj | D)d(Π|D) = (P ) –

∫

D
sup
j∈J

hjdΠ

= sup
j∈J

(P ) –
∫

D
hjdΠ

= sup
j∈J

(P ) –
∫

D
Π(hj | D)d(Π|D)

= (P ) –
∫

D
sup
j∈J

Π(hj | D)d(Π|D).

Part I, Proposition 6.4(iii) now implies (ii).

3 CONDITIONAL POSSIBILITY OF FUZZY EVENTS AND
EVENTS: TYPE 2

In this section, we take a closer look at a second and more familiar type of conditional possibility
for (fuzzy) events. We denote by (X,R, Π) a (L,≤)-possibility space. π is the possibility
distribution of Π.

3.1 Definition and Important Properties

In Theorem 3.1 we discuss the existence and uniqueness of solutions of the integral equation (20),
which leads in Definition 3.2 to the introduction of a second type of conditional possibility
(probabilistic counterpart: [Burrill, 1972] subsection 15-1.2, Eq. (9)). For the notations used
here, I refer to Part I, section 5.

Theorem 3.1. Let h and g be (L,≤)-fuzzy variables in (X,R). Then there exists a L − L-
mapping f satisfying

(∀B ∈ ℘(L))

(

(P ) –
∫

B
fdΓg = (P ) –

∫

g−1(B)
hdΠ

)

. (20)

Any solution f of this integral equation is unique in the sense of (Γg, P )-equivalence.
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Proof. Define the ℘(L)− L-mapping Φ as

(∀B ∈ ℘(L))

(

Φ(B) = (P ) –
∫

g−1(B)
hdΠ

)

.

This allows us to rewrite Eq. (20) as

(∀B ∈ ℘(L))
(

(P ) –
∫

B
fdΓg = Φ(B)

)

.

It is furthermore easily proven that Φ is a (L,≤)-possibility measure on (L,℘(L)), using the
properties of the inverse image of a mapping and a course of reasoning that is analogous to the
one followed in the proof of Part I, Proposition 7.1. Also, we have for any B in ℘(L) that, taking
into account Part I, Eq. (5) and the R-measurability of h,

Φ(B) = sup
x∈g−1(B)

P (h(x), π(x)) ≤ sup
x∈g−1(B)

π(x) = Π(g−1(B)) = Γg(B).

Since the t-seminorm P on (L,≤) is assumed to be weakly left-invertible, the Radon-Nikodym-
like Theorem 7.2 in Part I completes the proof.

Definition 3.2. Let h and g be (L,≤)-fuzzy variables in (X,R). Any member of the equivalence
class of solutions of the integral equation (20) in the L−L-mapping f is denoted by Π(h | g = ·).
This means that

(∀B ∈ ℘(L))

(

(P ) –
∫

B
Π(h | g = ·)dΓg = (P ) –

∫

g−1(B)
hdΠ

)

.

For any λ in L we call Π(h | g = λ) the conditional (L,≤, P )-possibility of h, given that g takes
the value λ. For any A in R the L − L-mapping Π(χA | g = ·) is also written as Π(A | g = ·).
For any λ in L we call Π(A | g = λ) the conditional (L,≤, P )-possibility of A given that g takes
the value λ. Taking into account Part I, Eqs. (8) and (9), this means that

(∀B ∈ ℘(L))
(

(P ) –
∫

B
Π(A | g = ·)dΓg = Π(A ∩ g−1(B))

)

.

If, for whatever reason, we do not want to mention the structure (L,≤, P ) explicitly, we simply
use the name ‘conditional possibility’ instead of ‘conditional (L,≤, P )-possibility’.

As before, we can find explicit formulas for the calculation of these conditional possibilities,
using the notion of a left-residual. The proof of this result is completely analogous to the proof
of Proposition 2.3, and is therefore omitted.

Proposition 3.3. Let h and g be elements of GR(L,≤)(X) and let A be an element of R. Then

(i) Π(h | g = ·) (Γg,P )
= (P ) –

∫

g−1({·})
hdΠ CP γg(·);

(ii) Π(A | g = ·) (Γg,P )
= Π(A ∩ g−1({·})) CP γg(·).
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The mappings on the right hand sides of (i) and (ii) are also the greatest members, w.r.t. the

relation v on F(L,≤)(L), of the respective equivalence classes of the equivalence relation
(Γg,P )
=

they belong to. In other words, they are the greatest solutions of the corresponding integral
equations.

In Theorem 3.4, we see that the conditional possibilities of this type also behave in a cer-
tain sense as ordinary normal possibility measures (probabilistic counterpart: [Burrill, 1972]
Theorem 15-3B). Let me emphasize that the ‘equalities’ which appear in this theorem, are
(Γg, P )-equivalences of L − L-mappings. They are of course in general less stringent than the
pointwise equalities of these mappings.

Theorem 3.4. Let g be a (L,≤)-fuzzy variable in (X,R).

(i) Π(∅ | g = ·) (Γg,P )
= 0L and Π(X | g = ·) (Γg,P )

= 1L.

(ii) Let {hj | j ∈ J} be a family of elements of GR(L,≤)(X). Then

Π(sup
j∈J

hj | g = ·) (Γg,P )
= sup

j∈J
Π(hj | g = ·).

(iii) Let {Aj | j ∈ J} be a family of elements of R. Then

Π(
⋃

j∈J

Aj | g = ·) (Γg,P )
= sup

j∈J
Π(Aj | g = ·).

Proof. Statement (i) immediately follows from Part I, Corollary 6.5. It is easily seen that (iii)
follows from (ii). Let us therefore prove (ii). Let B be an arbitrary element of ℘(L). Then, by
definition, taking into account Part I, Eq. (11),

(P ) –
∫

B
Π(sup

j∈J
hj | g = ·)dΓg = (P ) –

∫

g−1(B)
sup
j∈J

hjdΠ,

= sup
j∈J

(P ) –
∫

g−1(B)
hjdΠ

= sup
j∈J

(P ) –
∫

B
Π(hj | g = ·)dΓg

= (P ) –
∫

B
sup
j∈J

Π(hj | g = ·)dΓg.

It now follows from Part I, Proposition 6.4(iii) that (ii) holds.

It appears from Theorem 3.5 that there exists a natural relationship between the two types of
conditional possibilities that we have up to now defined (probabilistic counterpart: [Burrill, 1972]
Theorem 15-1K). In order to uncover this relationship, let us first introduce a new notion. Let g
be an arbitrary X − L-mapping. We denote by τ(g) the smallest ample field on X w.r.t. which
g is still measurable, i.e., τ(g) = τ({ g−1(B) | B ∈ ℘(L) }). It is easily proven that for any A in
℘(X), A ∈ τ(g) ⇔ g−1(g(A)) = A.

Theorem 3.5. Let h and g be elements of GR(L,≤)(X). Consider the L − L-mapping α defined

by α(λ) = Π(h | g = λ), λ ∈ L. Then Π(h | g = g(·)) = α ◦ g
(Π|τ(g),P )

= Π(h | τ(g)).
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Proof. Since g is R-measurable, we know by definition that τ(g) ⊆ R. Let D be an arbitrary
element of τ(g). Then D = g−1(g(D)). Since g(D) ∈ ℘(L), we may write on the one hand that,
by definition,

(P ) –
∫

g(D)
Π(h | g = ·)dΓg = (P ) –

∫

D
hdΠ = (P ) –

∫

D
Π(h | τ(g))d(Π|τ(g)).

On the other hand, taking into account Part I, Eq. (5) and the τ(g)-measurability of α ◦ g,

(P ) –
∫

D
(α ◦ g)d(Π|τ(g)) = sup

y∈D
P ((α ◦ g)(y),Π([ y ]τ(g)))

= sup
y∈D

P ((α ◦ g)(y), sup
x∈[ y ]τ(g)

π(x))

= sup
y∈D

sup
x∈[ y ]τ(g)

P ((α ◦ g)(y), π(x))

and once again using the τ(g)-measurability of α ◦ g, and Part I, Eq. (1), since D ∈ τ(g),

= sup
x∈

⋃

y∈D
[ y ]τ(g)

P ((α ◦ g)(x), π(x))

= sup
x∈D

P ((α ◦ g)(x), π(x)).

Again, since α ◦ g is τ(g)-measurable and therefore also R-measurable, it follows from Part I,
Eq. (5) that

= (P ) –
∫

D
(α ◦ g)dΠ.

The right hand side of this equality can be further transformed by invoking the integral transport
formula (Part I, Theorem 4.4), with the following correspondences: X1 → X, X2 → L, f → g,
R1 → R, R1

(f) → R(g) = ℘(L), Π1 → Π, Π1
(f) → Π(g) = Γg, h → α, E → g(D), f−1(E) →

g−1(g(D)) = D. This leads to

(P ) –
∫

D
(α ◦ g)d(Π|τ(g)) = (P ) –

∫

g(D)
αdΠ(g) = (P ) –

∫

g(D)
Π(h | g = ·)dΓg.

We conclude that for any D in τ(g)

(P ) –
∫

D
(α ◦ g)d(Π|τ(g)) = (P ) –

∫

D
Π(h | τ(g))d(Π|τ(g)).

which completes the proof, taking into account Part I, Proposition 6.4(iii).

3.2 Some Special Cases

The conditional possibilities introduced in this section have a number of important special cases,
which we shall presently investigate. The first case is singled out in Definition 3.6 (probabilistic
counterpart: [Burrill, 1972] subsection 15-3.2, Eq. (13)). In Corollary 3.7 we show that these
special cases also behave to a certain extent as ordinary normal possibility measures.

14



Definition 3.6. Let h and g be (L,≤)-fuzzy variables (X,R). We introduce the following
mappings, for any λ in L and any B in ℘(L):

γh|g(λ | ·) : L → L : µ 7→ Π(h−1({λ}) | g = µ)

Γh|g(B | ·) : L → L : µ 7→ Π(h−1(B) | g = µ).

For any µ in L,

(i) γh|g(λ | µ) = Π(h−1({λ}) | g = µ) is called the conditional (L,≤, P )-possibility that h
takes the value λ given that g takes the value µ;

(ii) Γh|g(B | µ) = Π(h−1(B) | g = µ) is called the conditional (L,≤, P )-possibility that h takes
a value in B given that g takes the value µ.

If, for whatever reason, we do not want to mention the structure (L,≤, P ) explicitly, we simply
use the name ‘conditional possibility’ instead of ‘conditional (L,≤, P )-possibility’.

Corollary 3.7. Let h and g be (L,≤)-fuzzy variables in (X,R).

(i) Γh|g(∅ | ·)
(Γg,P )
= 0L and Γh|g(L | ·)

(Γg,P )
= 1L.

(ii) For any family {Bj | j ∈ J} of elements of ℘(L)

Γh|g(
⋃

j∈J

Bj | ·)
(Γg,P )
= sup

j∈J
Γh|g(Bj | ·).

(iii) For any B in ℘(L)

Γh|g(B | ·) (Γg,P )
= sup

λ∈B
γh|g(λ | ·).

Proof. Statements (i) and (ii) of this corollary are special cases of Theorem 3.4(i) and (iii),
taking into account the properties of the inverse image of a mapping. Statement (iii) can be
easily derived from (ii).

We should not lose sight of the following: the mappings Π(h−1(A) | g = ·), for A in ℘(L),
underlying this new type of conditional possibility, are only determined up to (Γg, P )-equivalence.
The same must therefore hold for the conditional possibilities introduced in Definition 3.6. In
the next theorem, we show that these can also be considered as solutions of a particular integral
equation, which is of course a special case of (20): for any h and g in GR(L,≤)(X) and for any A
in ℘(L)

(∀B ∈ ℘(L))
(

(P ) –
∫

B
fdΓg = Γ(h,g)(A×B)

)

, (21)

where, of course, the L − L-mapping f is the unknown. We might just as well have defined
these conditional possibilities as arbitrary members of the equivalence class of solutions of this
integral equation. Both approaches are clearly equivalent.

Let me also mention that the notations for these new notions are intended to remind the
reader of the possibility distributions and distribution functions of fuzzy variables, introduced in
Part I. Theorem 3.8 also tells us that there exists an important relationship between all of these
notions (probabilistic counterpart: [Burrill, 1972] Example 15-3B, Theorems 15-3C and 15-3D).
This observation may serve as a justification for the notations used here.
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Theorem 3.8. (i) For any A and B in ℘(L):

(P ) –
∫

B
Γh|g(A | ·)dΓg = Γ(h,g)(A×B).

(ii) For any λ and µ in L:
P (γh|g(λ | µ), γg(µ)) = γ(h,g)(λ, µ).

Proof. Statement (ii) is an immediate consequence of (i), with A = {λ} and B = {µ}. Let us
therefore prove (i). Consider arbitrary A and B in ℘(L). Then, by definition,

(P ) –
∫

B
Γh|g(A | ·)dΓg = (P ) –

∫

B
Π(h−1(A) | g = ·)dΓg

= Π(h−1(A) ∩ g−1(B))

= Π((h, g)−1(A×B))

= Γ(h,g)(A×B).

Let us now look at a second special case. Consider arbitrary events D and E in R. The
characteristic X − L-mappings χD and χE are of course (L,≤)-fuzzy variables in (X,R). It
follows from Theorem 3.8(ii) that for any λ and µ in L, the element γχD|χE (λ | µ) of L satisfies

P (γχD|χE (λ | µ), γχE (µ)) = γ(χD,χE)(λ, µ).

If we choose λ = µ = 1L, this may, taking into account γχE (1L) = Π(χ−1
E ({1L})) = Π(E) and

γ(χD,χE)(1L, 1L) = Π((χD, χE)−1({(1L, 1L)})) = Π(D ∩ E), also be written as

P (γχD|χE (1L | 1L), Π(E)) = Π(D ∩ E). (22)

We now deduce the following definition from Definition 3.6 (probabilistic counterpart: [Burrill,
1972] chapter 15, Eq. (1)).

Definition 3.9. Let D and E be arbitrary elements of R. We know that, by definition,

γχD|χE (1L | 1L) = Π(χ−1
D ({1L}) | χE = 1L) = Π(D | χE = 1L).

We therefore call γχD|χE (1L | 1L) the conditional (L,≤, P )-possibility of D given E. γχD|χE (1L |
1L) is also written as Π(D | E), and (22) can therefore be rewritten as

P (Π(D | E), Π(E)) = Π(D ∩ E).

If, for whatever reason, we do not want to mention the structure (L,≤, P ) explicitly, we simply
use the name ‘conditional possibility’ instead of ‘conditional (L,≤, P )-possibility’.

Again, it should be noted that Π(D | E) has been defined using the L − L-mapping Π(D |
χE = ·), which is only determined up to (ΓχE , P )-equivalence. Another, completely equivalent,
approach would consist in defining Π(D | E) as an arbitrary member of the set of solutions of
the equation

P (ν, Π(E)) = Π(D ∩ E)

in the element ν of L. Note the correspondence between this equation and Eq. (12) used by
Dubois and Prade, Shafer, and Ramer to define conditional possibility for events.
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3.3 A Possibilistic Counterpart for Bayes’ Theorem

We can use the two types of conditional possibilities defined thus far to derive a possibilistic
counterpart for Bayes’ theorem. Let us consider a partition A of the universe X that is R-
measurable, i.e., A ⊂ R. Then clearly τ(A) ⊆ R, so that, for any A in R, we may consider the
conditional possibility Π(A | τ(A)) of A given τ(A). Remark that the elements of the partition
A are the atoms of the ample field τ(A). By Definition 2.2, we find that for any B in τ(A),
since Π(A | τ(A)) is a τ(A)-measurable X − L-mapping:

Π(A ∩B) = (P ) –
∫

B
Π(A | τ(A))d(Π|τ(A))

= sup
x∈B

P (Π(A | τ(A))(x), Π([x ]τ(A)))

= sup
D∈A,D⊆B

sup
x∈D

P (Π(A | τ(A))(x),Π(D))

= sup
D∈A,D⊆B

P (κ(A,D),Π(D)),

where we have denoted the constant value of Π(A | τ(A)) on D by κ(A,D). As a special case,
we find for B = D ∈ A that Π(A ∩D) = P (κ(A,D), Π(D)) and Definition 3.9 tells us that on
the other hand Π(A ∩D) = P (Π(A | D), Π(D)). Therefore,

Π(A ∩B) = sup
D∈A,D⊆B

P (Π(A | D), Π(D)).

and in particular for B = X,

Π(A) = sup
D∈A

P (Π(A | D), Π(D)),

the possibilistic equivalent of the total probability rule. On the other hand, again by Defini-
tion 3.9, we find for any E in A that Π(A∩E) = P (Π(E | A), Π(A)) = P (Π(A | E),Π(E)). The
greatest value of Π(E | A) is therefore given by

Π(E | A) = P (Π(A | E), Π(E)) CP sup
D∈A

P (Π(A | D), Π(D))

which is clearly a possibilistic counterpart for Bayes’ theorem, where sup assumes the role of
addition, P the role of multiplication, and CP the role of division.

3.4 An Interesting Example

In this paper, I give an abstract treatment of conditional possibility which is based upon the
analogy with probability theory. The following example provides a justification for this approach
from an interpretational point of view. It shows that in the case of classical possibility this
abstract treatment leads to results which have a natural intuitive interpretation.

Classical possibility, in a sense, has been the starting point and source of inspiration for
the introduction of more general forms of possibility. It has a straightforward interpretation.
Indeed, consider an experiment E, the outcome o of which can take values in a universe X.
The elements of the ample field R on X are the measurable sets (or events) associated with the
universe. Consider an event A, different from ∅. If we know for certain that the outcome of the
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experiment must belong to A – i.e., that the event A occurs –, we can represent this information
by the R− {0, 1}-mapping ΠA, defined by

(∀B ∈ R)

(

ΠA(B) =

{

1 ; A ∩B 6= ∅
0 ; A ∩B = ∅

)

.

For any B in R, ΠA(B) is the possibility of the occurrence of the event B, based upon the
information that A occurs with certainty: if ΠA(B) = 1 the occurrence of B is possible, and if
ΠA(B) = 0 the occurrence of B is impossible. Of course, ΠA is a ({0, 1},≤)-possibility measure
on (X,R). The complete Boolean chain ({0, 1},≤) is completely determined by 0 < 1. On this
structure, there exists only one triangular (semi)norm: the meet or Boolean multiplication ∧.
The structure ({0, 1},≤,∧) is a complete chain with t-norm [De Cooman and Kerre, 1994].

Let us now consider two elements B and C of R and look for solutions ΠA(B | C) of the
particular equation for conditional possibility

ΠA(B ∩ C) = ΠA(B | C) ∧ΠA(C), (23)

which is a special case of (22). This equation is equivalent with
{

1 ; A ∩B ∩ C 6= ∅
0 ; A ∩B ∩ C = ∅

= ΠA(B | C) ∧
{

1 ; A ∩ C 6= ∅
0 ; A ∩ C = ∅,

whence

ΠA(B | C) =















1 ; A ∩B ∩ C 6= ∅ and A ∩ C 6= ∅
0 ; A ∩B ∩ C = ∅ and A ∩ C 6= ∅
0 or 1 ; A ∩ C = ∅.

How can this result be interpreted? Whenever the occurrence of C is impossible – A ∩ C = ∅,
or equivalently ΠA(C) = 0 – Eq. (23) imposes no restrictions on the values ΠA(B | C) can
assume in {0, 1}. When, however, the occurrence of C is possible – A ∩ C 6= ∅, or equivalently
ΠA(C) = 1 – we must distinguish between two possible cases:

• A ∩B ∩C = ∅; in this case the events B and C cannot occur together, and we must have
that ΠA(B | C) = 0;

• A ∩ B ∩ C 6= ∅; in this case B and C can occur together, and we must have that ΠA(B |
C) = 1.

The interpretation of these results is straightforward. If A∩C 6= ∅, ΠA(B | C) may be considered
as the possibility that B occurs, given that C occurs – keeping in mind the information that the
occurrence of the event A is certain. When indeed in this case A∩B ∩C = ∅ and we know that
C occurs, it immediately follows that the outcome o of the experiment E cannot belong to B.
This is in agreement with ΠA(B | C) = 0. When on the other hand A∩B ∩C 6= ∅ and we know
that C occurs, it is still perfectly possible that the outcome o of the experiment belongs to B.
This corresponds with ΠA(B | C) = 1.

Finally, if A ∩ C = ∅, the event C cannot occur, and it therefore strictly speaking makes
little sense to talk about the possibility that B occurs given that C occurs. This is reflected in
the fact that in this case Eq. (23) imposes no restriction whatsoever on the values of ΠA(B | C).
By the way, a similar interpretational difficulty occurs in the case of conditional probability.
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4 CONDITIONAL POSSIBILITY OF POSSIBILISTIC VARI-
ABLES

In this section we study a third type of conditional possibility, which is, in fact, a generalization of
the second. In this generalization, possibilistic variables play the part of the fuzzy variables that
appear, for instance, in Definition 3.6. It is precisely this new type of conditional possibility
which can serve as a formalization of the conditional possibilities introduced by Zadeh and
Hisdal. Many results in this paragraph are related to the results of Zadeh [1978], Hisdal [1978],
Dubois and Prade [1984], briefly summarized in section 1. How these results are arrived at, is
however very different in both approaches. To give an example, Zadeh and others use a more
or less intuitive notion of a variable, whereas I prefer a formal definition: in the view presented
here, a variable is a measurable mapping from a basic space to a sample space (see also the
discussion in Part I, subsection 4.2). Furthermore, I define conditional possibilities for these
variables starting from a particular type of integral equation, and closely follow the treatment
in the previous sections. The approach of Zadeh and others could be considered as a first,
more intuitive attempt to introduce conditional possibility. The measure- and integral-theoretic
results, developed in the first paper of this series, allows me to give a more systematic and formal
treatment, which solves some of the problems of the more intuitive approach.

4.1 Introductory Remarks and Definitions

In this section, Ω is a universe and RΩ an ample field of subsets of Ω. We consider (Ω,RΩ) as
a basic space, provided with a (L,≤)-possibility measure ΠΩ with distribution πΩ.

X1 and X2 are two universes, considered as sample spaces. R1 is an ample field on X1 and
R2 an ample field on X2. We also consider the product ample field R1×R2 of R1 and R2, which
is an ample field on the Cartesian product X1 × X2 of the universes X1 and X2 (see Part I,
section 2).

Furthermore, we consider a Ω − X1-mapping f1 and a Ω − X2-mapping f2. f1 is assumed
to be RΩ − R1-measurable and is therefore a possibilistic variable in (X1,R1). Likewise f2 is
assumed to be RΩ −R2-measurable, and is therefore a possibilistic variable in (X2,R2).

Finally, we consider the following well-known projection operators

proj1 : X1 ×X2 → X1 : (x1, x2) 7→ x1

proj2 : X1 ×X2 → X2 : (x1, x2) 7→ x2.

We start this discussion with the following observation: besides X1 and X2, the universe
X1 ×X2 can also be considered as a sample space, and besides the mappings f1 and f2 we may
consider the Ω−X1×X2-mapping (f1, f2). The following proposition tells us that this mapping
is a possibilistic variable in (X1 ×X2,R1 ×R2).

Proposition 4.1. (f1, f2) is RΩ−R1×R2-measurable if and only if f1 is RΩ−R1-measurable
and f2 is RΩ −R2-measurable.

Proof. Assume on the one hand that f1 is RΩ − R1-measurable and that f2 is RΩ − R2-
measurable. We must show that (f1, f2)−1(R1 ×R2) = { (f1, f2)−1(B) | B ∈ R1 ×R2 } ⊆ RΩ.
If we write A = {B1 ×B2 | B1 ∈ R1 and B2 ∈ R2 }, then we have by definition that

(f1, f2)−1(A) = { (f1, f2)−1(B1 ×B2) | B1 ∈ R1 and B2 ∈ R2 }
= { f−1

1 (B1) ∩ f−1
2 (B2) | B1 ∈ R1 and B2 ∈ R2 }
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and, since by assumption f−1
1 (R1) ⊆ RΩ and f−1

2 (R2) ⊆ RΩ, and since furthermore the ample
fieldRΩ is closed under intersections, it follows that (f1, f2)−1(A) ⊆ RΩ. Taking into account the
properties of the closure operator τ (see Part I, section 2), we deduce that τ((f1, f2)−1(A)) ⊆
τ(RΩ) = RΩ, and since the inverse image preserves complements, and arbitrary unions and
intersections, this can be rewritten as (f1, f2)−1(τ(A)) ⊆ RΩ. By definition, τ(A) = R1 ×R2,
whence (f1, f2)−1(R1 ×R2) ⊆ RΩ, and therefore (f1, f2) is RΩ −R1 ×R2-measurable.

Conversely, assume that (f1, f2) is RΩ − R1 × R2-measurable. We will show that f1 is
RΩ − R1-measurable. The proof of the RΩ − R2-measurability of f2 is completely analogous.
Consider an arbitrary element B1 of R1. Since B1 × X2 belongs to R1 × R2, we have, by
assumption, that

RΩ 3 (f1, f2)−1(B1 ×X2) = f−1
1 (B1) ∩ f−1

2 (X2) = f−1
1 (B1) ∩ Ω = f−1

1 (B1).

With the possibilistic variables f1, f2 and (f1, f2) we can associate possibility distributions
and possibility distribution functions. They are obtained by transforming the possibility measure
ΠΩ using these variables (see Part I, subsection 4.1). From the assumptions made above and
Proposition 4.1 we easily deduce that R1 ⊆ RΩ

(f1), R2 ⊆ RΩ
(f2) and R1 × R2 ⊆ RΩ

((f1,f2)).
This allows the introduction of the following possibility measures: Πf1 = ΠΩ

(f1)|R1, Πf2 =
ΠΩ

(f2)|R2 and Π(f1,f2) = ΠΩ
((f1,f2))|R1 ×R2. Πf1 is the transformed (L,≤)-possibility measure

on (X1,R1) of ΠΩ and analogously for the (L,≤)-possibility measures Πf2 on (X2,R2) and
Π(f1,f2) on (X1×X2,R1×R2). These possibility measures contain information about the values
that the respective possibilistic variables f1, f2 and (f1, f2) assume in the universes X1, X2 and
X1 ×X2 respectively. The distributions of these possibility measures are denoted respectively
by πf1 , πf2 and π(f1,f2). Following the spirit of Zadeh’s work and the terminology introduced
in Part I, Definition 4.3, we call Πf1 , Πf2 and Π(f1,f2) the possibility distributions of f1, f2 and
(f1, f2); πf1 , πf2 and π(f1,f2) are called the possibility distribution functions of these possibilistic
variables.

For these possibility measures, a number of interesting results may be derived, provided we
use the projection operators proj1 and proj2. The foundation for these results is laid down in
the next proposition, using the notations established in Part I, subsection 4.1.

Proposition 4.2. (R1 ×R2)(proj1) = R1 and (R1 ×R2)(proj2) = R2.

Proof. We only give the proof of the first equality. The proof of the second equality is completely
analogous. By definition,

(R1 ×R2)(proj1) = {A1 | A1 ∈ ℘(X1) and proj−1
1 (A1) ∈ R1 ×R2 }

= {A1 | A1 ∈ ℘(X1) and A1 ×X2 ∈ R1 ×R2 }.

Consider an arbitrary A1 in ℘(X1). Assume on the one hand that A1 ∈ R1. It follows from the
definition of R1×R2 (see Part I, Eq. (2)) that A1×X2 ∈ R1×R2, whence A1 ∈ (R1×R2)(proj1).
Therefore R1 ⊆ (R1 ×R2)(proj1).

On the other hand, assume that A1 ∈ (R1×R2)(proj1). This implies that A1×X2 ∈ R1×R2.
Taking into account Part I, Eq. (1), this implies that

A1 ×X2 =
⋃

(x1,x2)∈A1×X2

[ (x1, x2) ]R1×R2
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and, taking into account Part I, Eq. (3) and the associativity of union,

=
⋃

x1∈A1

⋃

x2∈X2

[ x1 ]R1 × [x2 ]R2

=





⋃

x1∈A1

[ x1 ]R1



×





⋃

x2∈X2

[x2 ]R2





=





⋃

x1∈A1

[ x1 ]R1



×X2.

It follows that A1 =
⋃

x1∈A1
[ x1 ]R1 whence, taking into account Part I, Eq. (1), A1 ∈ R1. This

implies that (R1 ×R2)(proj1) ⊆ R1.

In very much the same way as R1 and R2 can be obtained through ‘projection’ of R1 ×R2,
the projection operators allow us to transform Π(f1,f2) into Πf1 and Πf2 . Indeed, for any A1 in
R1

Πf1(A1) = ΠΩ
(f1)(A1)

= ΠΩ(f−1
1 (A1))

= ΠΩ((f1, f2)−1(A1 ×X2))

and, since A1 ×X2 ∈ R1 ×R2,

= Π(f1,f2)(A1 ×X2)

= Π(f1,f2)(proj−1
1 (A1))

= Π(f1,f2)
(proj1)(A1).

Similarly, we find for any element A2 of R2 that Πf2(A2) = Π(f1,f2)
(proj2)(A2). We conclude, also

taking into account the previous proposition, that Πf1 = Π(f1,f2)
(proj1) and Πf2 = Π(f1,f2)

(proj2).
This can be reformulated in the following proposition, a formalization of Eqs. (1)–(4).

Proposition 4.3. (i) (∀A1 ∈ R1)(Πf1(A1) = Π(f1,f2)(A1 ×X2)).

(ii) (∀A2 ∈ R2)(Πf2(A2) = Π(f1,f2)(X1 ×A2)).

(iii) (∀x1 ∈ X1)(πf1(x1) = sup
x2∈X2

π(f1,f2)(x1, x2)).

(iv) (∀x2 ∈ X2)(πf2(x2) = sup
x1∈X1

π(f1,f2)(x1, x2)).

4.2 Conditional Possibility

We now have enough information to begin the discussion of conditional possibility of possibilistic
variables. In Theorem 4.4, we investigate the existence and uniqueness of the solutions of
the integral equation (24). This result leads to the introduction of a new type of conditional
possibility in Definition 4.5. It should be noted that (24) is a generalization of (21) from fuzzy
variables to possibilistic ones.
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Theorem 4.4. For every A1 in R1 there exists a (L,≤)-fuzzy variable h in (X2,R2) satisfying

(∀A2 ∈ R2)
(

(P ) –
∫

A2

hdΠf2 = Π(f1,f2)(A1 ×A2)
)

. (24)

Any solution h of this integral equation is unique in the sense of (Πf2 , P )-equivalence.

Proof. Let A1 be any element of R1. We define the R2 − L-mapping ΦA1 as

(∀A2 ∈ R2)(ΦA1(A2) = Π(f1,f2)(A1 ×A2)).

ΦA1 is clearly a (L,≤)-possibility measure on (X2,R2). Furthermore, since A1×A2 ⊆ X1×A2,
we find that

ΦA1(A2) = Π(f1,f2)(A1 ×A2) ≤ Π(f1,f2)(X1 ×A2) = Πf2(A2),

also using Proposition 4.3(ii). Since P is assumed to be weakly left-invertible, the Radon-
Nikodym-like Theorem 7.2 in Part I completes the proof.

Definition 4.5. Let A1 be an element of R1. Any member of the equivalence class of solutions
of the integral equation (24) in the (L,≤)-fuzzy variable h in (X2,R2) is denoted by Πf1|f2(A1 | ·).
This means that

(∀A2 ∈ R2)
(

(P ) –
∫

A2

Πf1|f2(A1 | ·)dΠf2 = Π(f1,f2)(A1 ×A2)
)

.

For any x2 in X2, Πf1|f2(A1 | x2) is called the conditional (L,≤, P )-possibility that f1 takes
a value in A1 given that f2 takes a value in [ x2 ]R2 . For any x1 in X1, Πf1|f2([ x1 ]R1 | x2) is
also written as πf1|f2(x1 | x2). If, for whatever reason, we do not want to mention the structure
(L,≤, P ) explicitly, we simply use the name ‘conditional possibility’ instead of ‘conditional
(L,≤, P )-possibility’.

In the following proposition, we derive a formula for the explicit calculation of these con-
ditional possibilities. Here again, use is made of left-residuals. I want to point out that state-
ment (ii) of this proposition justifies and at the same time generalizes Eq. (14).

Proposition 4.6. Let A1 be an element of R1 and let x1 be an element of X1. Then

(i) Πf1|f2(A1 | ·)
(Πf2

,P )

= Π(f1,f2)(A1 × [ · ]R2) CP πf2(·);

(ii) πf1|f2(x1 | ·)
(Πf2

,P )

= π(f1,f2)(x1, ·) CP πf2(·).

The mappings on the right hand sides of (i) and (ii) are also the greatest members, w.r.t. the

relation v on GR2
(L,≤)(X2), of the respective equivalence classes of the equivalence relation

(Πf2
,P )

=
they belong to. In other words, they are the greatest solutions of the corresponding integral
equations.

Proof. Statement (ii) is an immediate consequence of (i). It therefore suffices to prove (i). Let
h be any (L,≤)-fuzzy variable in (X2,R2). It is easily verified that (24) is equivalent with

(∀x2 ∈ X2)(P (h(x2), πf2(x2)) = Π(f1,f2)(A1 × [ x2 ]R2)). (25)
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It should furthermore be remembered that P is weakly left-invertible. On the other hand, for
any x2 in X2, taking into account Proposition 4.3(iv),

πf2(x2) = sup
x1∈X1

π(f1,f2)(x1, x2) ≥ sup
x1∈A1

π(f1,f2)(x1, x2) = Π(f1,f2)(A1 × [ x2 ]R2).

Propositions 2.1 and 2.2 in Part I now complete the proof.

Let (x1, x2) be an element of X1 ×X2. For A1 = [x1 ]R1 and A2 = [ x2 ]R2 it follows from
Definition 4.5 that

π(f1,f2)(x1, x2) = P (πf1|f2(x1 | x2), πf2(x2)). (26)

This formula generalizes Eqs. (7) and (11), used respectively by Hisdal, and Dubois and Prade to
introduce conditional possibility distributions. It should also be stressed that the πf1|f2(x1 | x2)
occurring in (26) are generalizations of the γh|g(λ | µ) that for instance appear in Theorem 3.8(ii).

In particular, we also deduce from Definition 4.5 and Proposition 4.3(i) that

(∀A1 ∈ R1)
(

(P ) –
∫

X2

Πf1|f2(A1 | ·)dΠf2 = Πf1(A1)
)

,

which reminds us of Sugeno’s formula (17) for conditional fuzzy measures.
In Theorem 4.7, we show that conditional possibilities of the third type also to a certain

extent behave as ordinary normal possibility measures would. The ‘equalities’ that appear in
these results are not pointwise equalities of mappings, but rather (Πf2 , P )-equivalences of fuzzy
variables in (X2,R2). In this context, I want to remind the reader that precisely in this fact lies
my solution to Hisdal’s problem, as discussed in section 1.

Theorem 4.7. (i) Πf1|f2(∅ | ·)
(Πf2

,P )

= 0L and Πf1|f2(X1 | ·)
(Πf2

,P )

= 1L.

(ii) Let {Aj | j ∈ J} be a family of elements of R1. Then

Πf1|f2(
⋃

j∈J

Aj | ·)
(Πf2

,P )

= sup
j∈J

Πf1|f2(Aj | ·).

(iii) For any A1 in R1:

Πf1|f2(A1 | ·)
(Πf2

,P )

= sup
x1∈A1

πf1|f2(x1 | x2).

Proof. Statement (i) immediately follows from Part I, Corollary 6.5 and Proposition 4.3(ii).
Statement (iii) is an immediate consequence of (ii). Let us therefore prove (ii). Let B be any
element of R2. Then, by definition, and taking into account Part I, Eq. (11),

(P ) –
∫

B
Πf1|f2(

⋃

j∈J

Aj | ·)dΠf2 = Π(f1,f2)((
⋃

j∈J

Aj)×B)

= Π(f1,f2)(
⋃

j∈J

(Aj ×B))

= sup
j∈J

Π(f1,f2)(Aj ×B)

= sup
j∈J

(P ) –
∫

B
Πf1|f2(Aj | ·)dΠf2

= (P ) –
∫

B
sup
j∈J

Πf1|f2(Aj | ·)dΠf2 .
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Proposition 6.4(iii) in Part I now completes the proof.

We conclude this section with a theorem that exposes yet another important relationship be-
tween the conditional possibilities discussed here, and the second type of conditional possibility,
introduced in the previous section.

Theorem 4.8. Let A1 be an element of R1. Consider for any x2 in X2 the element

γχA1×X2 |χX1×[ x2 ]R2
(1L | 1L) = Π(f1,f2)(χ

−1
A1×X2

({1L}) | χX1×[ x2 ]R2
= 1L)

= Π(f1,f2)(A1 ×X2 | χX1×[ x2 ]R2
= 1L)

= Π(f1,f2)(A1 ×X2 | X1 × [ x2 ]R2)

of L (see also mutatis mutandis Definitions 3.6 and 3.9, where the possibility measure Π(f1,f2)
must be substituted for the possibility measure Π). This enables us to introduce the X2 − L-
mapping α:

(∀x2 ∈ X2)(α(x2) = γχA1×X2 |χX1×[ x2 ]R2
(1L | 1L)).

Then α is a (L,≤)-fuzzy variable in (X2,R2), and

Πf1|f2(A1 | ·)
(Πf2

,P )

= α = Π(f1,f2)(A1 ×X2 | X1 × [ · ]R2).

Proof. It is perfectly clear that α is R2-measurable. Let therefore A2 be any element of R2. By
definition,

(P ) –
∫

A2

Πf1|f2(A1 | ·)dΠf2 = Π(f1,f2)(A1 ×A2) = sup
x2∈A2

Π(f1,f2)(A1 × [x2 ]R2).

Furthermore,

Π(f1,f2)(A1 × [ x2 ]R2) = Π(f1,f2)(A1 ×X2 ∩X1 × [ x2 ]R2)

and it now follows from (22), if we substitute A1×X2 for D, X1× [ x2 ]R2 for E and Π(f1,f2) for
Π and take into account Proposition 4.3(ii), that

= P (γχA1×X2 |χX1×[ x2 ]R2
(1 | 1), Πf2([ x2 ]R2))

= P (α(x2), πf2(x2)).

Taking into account Part I, Eq. (5), this implies that

(P ) –
∫

A2

Πf1|f2(A1 | ·)dΠf2 = sup
x2∈A2

P (α(x2), πf2(x2)) = (P ) –
∫

A2

αdΠf2 .

Proposition 6.4(iii) in Part I now completes the proof.
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5 CONCLUSION

A prominent feature of the conditional possibilities defined here, is that they are not necessar-
ily uniquely defined, but only up to almost everywhere equality. A careful inspection of the
measure-theoretic literature on probability theory [Burrill, 1972] will show that the same holds
for conditional probabilities and expectations. However, in probability theory, this implies that
conditional expectations are (as stochastic variables) uniquely determined, except on a set with
zero probability. Because the notion of almost everywhere equality is somewhat different in
the possibilistic case (see the discussion in Part I, section 6) the nondeterminacy may be more
apparent for conditional possibilities, but it has essentially the same origin! In principle, there
is no fundamental difference between conditional possibilities, and conditional probabilities and
expectations as far as their indeterminacy is concerned. As in probability theory, this inde-
terminacy is of no consequence, because conditional possibilities are to my knowledge in the
end never used per se, but are eventually always combined with ‘ordinary possibilities’. As a
result of this combination, the indeterminacy disappears, as is apparent from the formulas in
the previous sections. The nondeterminacy of conditional possibilities should therefore not be
seen as something undesirable, that necessarily should be avoided or eliminated by imposing
additional conditions in order to ensure uniqueness. In my opinion, it should simply be taken
at face value, and dealt with using the proper mathematical care.

Indeed, the nondeterminacy of conditional possibilities has one important consequence, that
should never be overlooked (as it should not in probability theory either). In this approach
here, whenever, in any definition, we use a conditional possibility, we should allow for the
fact that this conditional possibility is only determined up to almost everywhere equality. As
a consequence, if we write down equalities between conditional possibilities, these cannot be
functional pointwise equalities, but must always be the appropriate almost everywhere equalities
(or equivalences). As we have seen, Hisdal’s failure to appreciate this has led her to distinguish
between Zadeh’s notion of noninteractivity [Zadeh, 1978], and her own definition of possibilistic
independence [Hisdal, 1978]. Her notion of possibilistic independence, by the way, makes little
sense, precisely because in her definition she uses the pointwise equality of conditional and
marginal possibilities, and not the proper almost everywhere equality, as she should have done,
since her conditional possibilities are not uniquely defined. This example will illustrate that this
measure- and integral-theoretic approach to possibility theory can solve a number of problems
and inconsistencies in the literature.

On the other hand, it is of course always possible to invoke additional principles in order to
eliminate the nonuniqueness of conditional possibilities [Dubois and Prade, 1990] [Ramer, 1989].
The point I have tried to make in this paper, however, is that this is not necessary, provided
that this nonuniqueness is mathematically taken into account, in the way suggested above.

Besides, as Theorems 2.4, 3.4 and 4.7 and Corollary 3.7 indicate, the conditional possibilities
defined here behave as normal possibilities in the sense of equivalence. If additional conditions
are imposed to ensure their uniqueness, and equivalence is accordingly turned into strict equality,
it will in general be a non-trivial problem to still make the corresponding conditional possibilities
behave as normal possibilities. As an example, let us consider that most popular of additional
requirements, the principle of minimum specificity [Dubois and Prade, 1990], which tells us that
if there is nonunicity, we must take the maximal, and therefore least specific or least committal
solution. If we borrow the notations from section 4, this together with proposition 4.6 tells us
that, for any x1 in X1, x2 in X2 and A1 inR1: Πf1|f2(A1 | x2) = Π(f1,f2)(A1×[ x2 ]R2) CP πf2(x2)
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and πf1|f2(x1 | x2) = π(f1,f2)(x1, x2) CP πf2(x2). Now, to make these conditional possibilities
behave as normal possibilities, it must among other things be that

Πf1|f2(A1 | x2) = sup
x1∈A1

πf1|f2(x1 | x2).

This will in general be the case if and only if for any b in L and any family {aj | j ∈ J} of
elements of L:

sup
j∈J

(aj CP b) = (sup
j∈J

aj) CP b. (27)

It is for instance easily verified that (27) does not generally hold for the very popular choice
(L,≤) = ([0, 1],≤), P = min.

Moreover, if extra conditions are indeed imposed to ensure uniqueness, one must also make
sure that these are consistent with the definition that is used for possibilistic independence, as
I shall among other things explain in the third paper of this series.
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