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Bayes Theorem

� Assumptions

• a prior θ ∼ Diri(α) for the case K = 2

• data a with sampling distribution a|θ ∼ Mn(n,θ)

� 1) Show that

• θ1|a ∼ Beta(a + α)

• a1 ∼ BeBi(n;α)

Hint: Use Bayes’ theorem, and the equivalence

between Beta and Diri for K = 2.

� 2) Show,

• assuming future data a′ sampled independently

from the same population, i.e. a′ ∼ Mn(n′; θ),

• that a′1|a ∼ BeBi(n′;a + α)

Hint: Use Bayes’ theorem a second time.
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Expressions for the DiMn

� Assumptions: Consider a composition a =

(a1, . . . , aK), with
∑

k ak = n whose probability dis-

tribution is a Dirichlet-multinomial:

a ∼ DiMn(n;α)

� 1) Equivalent forms

Show the equivalence between the three forms of

the DiMn for a, in terms of

• generalized binomial coefficients

• gamma functions

• ascending factorials

See: Mathematical functions & coefficients

� 2) Application: Simplify the formula (defined

for any integer n and any reals 0 < α < s)

n
∑

a=0

(n

a

)

α[a](s − α)[n−a],

3



� 3) Sequences and compositions

Consider the case K = 2 and an observed se-

quence of length n = 4, S = (c1, c1, c2, c1), yield-

ing the counts a1 = 3, a2 = 1.

• How many sequences yield the same compo-

sition in counts? Same question for any com-

position (a1, a2)?

• What is the probability P(S) of sequence S?

• Express P(S) as the ratio of two products.

Can you find a graphical interpretation of that

result?

Hint: Represent any sequence as a path on a

plane with a1 on the x-axis and a2 on the y-axis.



Distribution DiMn
Particular cases

� Assumptions

• Consider that the composition in counts, over

K categories, a follows a DiMn(n;α)

� 1) Special case α = 1:

• Show that, in this case, a has a uniform dis-

tribution over its domain A.

• From previous result, deduce the number of

possible compositions of size n over K cat-

egories, i.e. the cardinal of A. Express this

number as a binomial coefficient.

� 2) Towards Haldane

• For the case K = 2 and n = 2, what are the

possible compositions a

• For each a, give the expression of P(a)

• Calculate this distribution for α1 = α2 = 1
2,

for α1 = α2 = 1
10

• What happens if α1 = α2 tends to 0?
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DiMn: pooling and restriction

� Assumptions

• Consider a ∼ DiMn(n;α) for K = 3, i.e. a =

a1, a2, a3 with fixed
∑

k ak = n

• Let a23 = a2 + a3 be the count of the pooled

category c23 = (c2 or c3)

� 1) Express the overall distribution on a, P(a),

as a function of the marginal P(a1, a23)

� 2) What does this entail for the following

distributions?

• P(a1, a23)

• P(a2, a3|a23)

� 3) Recursion: The preceding example can be

viewed as (i) defining a tree underlying the set

of categories C, T = {c1, c23 = {c2, c3}}, and (ii)

“cutting” tree T at node c23. What would be

obtained for K = 5 categories underlied by tree

T = {c1234 = {c1, c234 = {c2, c3, c4}}, c5}
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Bayesian prediction

� Assume the following prior and posterior

predictive distributions

• K is fixed

• a ∼ DiMn(n;α)

• a′ ∼ DiMn(n′;a + α)

� Answer the following questions

• First, consider the prior prediction for n = 1.

What is the probability that ak = 1?

• Now, consider the posterior prediction for n′ =

1. What is the probability that a′k = 1?

• Same questions, with assuming also that the

prior is a symmetric Dirichlet, i.e. αk = α

• Now, consider the “bag of marbles” data,

with observed data: 1 red, 2 green, 2 light

blue, 1 dark blue. Under the same assump-

tions, what is the probability that a′blue = 1

for n′ = 1?

• Is there a problem?
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Imprecision and s

� Assumptions

• Prior uncertainty is modelled by an IDMM(s)

• Denote by Bj the event that next observation

will be from category cj (possibly not elemen-

tary)

� Questions

• Find the prior lower and upper probabilities,

P(Bj) and P(Bj).

• After observing data a, find the posterior lower

and upper probabilities, P(Bj|a) and P(Bj|a).

• Define the imprecision about an event by ∆(·) =

P(·) − P(·). What are ∆(Bj) and ∆(Bj|a)?

• Compute the ratio of these two imprecisions.

When is it equal to 2, to 10?

• Apply the preceding results to the “bag of

marbles” example, with Bj being the event

that the next observation is blue.
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Confirming a universal law

� Assumptions

• There are K basic categories

• Amongst n observations, all were found to

belong to c1, i.e. a1 = n

• You envisage to collect n′ more data, and you

consider the hypothesis H0 that these future

data might all be of type c1 again, i.e. that

a′1 = n′.

� 1) Bayesian answers

• Under a standard Bayesian model, with prior

Diri(α), what is the expression P = Pα(H0|a)?

• What is the value of P under Haldane’s model,

i.e. α = 0?

• What is the value of P under Bayes-Laplace’s

model, i.e. α = 1, assuming K = 2, and then

K = 3?
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• Under Bayes-Laplace’s model, find the ex-

pressions of P for the special cases, n′ = 1,

n′ = n and n′ → ∞, assuming either K = 2 or

K = 3.

� 2) IDMM answers

• Under the prior IDMM(s), find the lower and

upper probabilities of the same event: P =

P(H0|a) and P = P(H0|a).

• What are these L&U probabilities for an IDMM

with s = 1, s = 2, and as s → 0 or s → ∞?

• Under the IDMM with s = 1, find the expres-

sions of P and P for the special cases, n′ = 1,

n′ = n and n′ → ∞.

• Do we need to make assumptions about K?

• Compare these results with those of part 1.

� 3) Iguana example:

Bernardo & Smith (1994) consider the example

of n = 90 iguanas all found with the same skin

pattern on an island where the overall number of

iguanas is estimated to be n∗ = n+n′ = 100,000.

Find the preceding Bayesian and IDMM(s = 1)

answers for that example.


