EXERCICES ABOUT IMPRECISE PREDICTIVE INFERENCE ABOUT CATEGORICAL DATA

Bayes Theorem

Assumptions

- a prior $\theta \sim Diri(\alpha)$ for the case K = 2
- data a with sampling distribution $a| \theta \sim Mn(n, \theta)$

\Box 1) Show that

- $heta_1 | a \sim \textit{Beta}(a + \alpha)$
- $a_1 \sim \text{BeBi}(n; \alpha)$

Hint: Use Bayes' theorem, and the equivalence between *Beta* and *Diri* for K = 2.

\Box 2) Show,

- assuming future data a' sampled independently from the same population, *i.e.* $a' \sim Mn(n'; \theta)$,
- that $a_1'|a \sim \mathsf{BeBi}(n'; a + \alpha)$

Hint: Use Bayes' theorem a second time.

Expressions for the DiMn

Assumptions: Consider a composition $a = (a_1, \ldots, a_K)$, with $\sum_k a_k = n$ whose probability distribution is a Dirichlet-multinomial:

 $a \sim DiMn(n; \alpha)$

□ 1) Equivalent forms

Show the equivalence between the three forms of the DiMn for a, in terms of

- generalized binomial coefficients
- gamma functions
- ascending factorials

See: Mathematical functions & coefficients

2) Application: Simplify the formula (defined for any integer n and any reals $0 < \alpha < s$)

$$\sum_{a=0}^{n} {n \choose a} \alpha^{[a]} (s-\alpha)^{[n-a]},$$

3

□ 3) Sequences and compositions

Consider the case K = 2 and an observed sequence of length n = 4, $S = (c_1, c_1, c_2, c_1)$, yielding the counts $a_1 = 3, a_2 = 1$.

- How many sequences yield the same composition in counts? Same question for any composition (a₁, a₂)?
- What is the probability P(S) of sequence S?
- Express P(S) as the ratio of two products. Can you find a graphical interpretation of that result?

Hint: Represent any sequence as a path on a plane with a_1 on the x-axis and a_2 on the y-axis.

Distribution DiMn Particular cases

□ Assumptions

- Consider that the composition in counts, over K categories, a follows a $DiMn(n; \alpha)$
- \Box **1)** Special case $\alpha = 1$:
 - Show that, in this case, a has a uniform distribution over its domain \mathcal{A} .
 - From previous result, deduce the number of possible compositions of size *n* over *K* categories, *i.e.* the cardinal of *A*. Express this number as a binomial coefficient.

□ 2) Towards Haldane

- For the case K = 2 and n = 2, what are the possible compositions a
- For each a, give the expression of P(a)
- Calculate this distribution for $\alpha_1 = \alpha_2 = \frac{1}{2}$, for $\alpha_1 = \alpha_2 = \frac{1}{10}$
- What happens if $\alpha_1 = \alpha_2$ tends to 0?

DiMn: pooling and restriction

□ Assumptions

- Consider $a \sim DiMn(n; \alpha)$ for K = 3, *i.e.* $a = a_1, a_2, a_3$ with fixed $\sum_k a_k = n$
- Let $a_{23} = a_2 + a_3$ be the count of the pooled category $c_{23} = (c_2 \text{ or } c_3)$

1) Express the overall distribution on a, P(a), as a function of the marginal $P(a_1, a_{23})$

□ 2) What does this entail for the following distributions?

- $P(a_1, a_{23})$
- $P(a_2, a_3|a_{23})$

3) Recursion: The preceding example can be viewed as (i) defining a tree underlying the set of categories C, $T = \{c_1, c_{23} = \{c_2, c_3\}\}$, and (ii) "cutting" tree T at node c_{23} . What would be obtained for K = 5 categories underlied by tree $T = \{c_{1234} = \{c_1, c_{234} = \{c_2, c_3, c_4\}\}, c_5\}$

Bayesian prediction

□ Assume the following prior and posterior predictive distributions

- K is fixed
- $a \sim DiMn(n; \alpha)$
- $a' \sim DiMn(n'; a + \alpha)$

□ Answer the following questions

- First, consider the prior prediction for n = 1. What is the probability that $a_k = 1$?
- Now, consider the posterior prediction for n' =1. What is the probability that $a'_k = 1$?
- Same questions, with assuming also that the prior is a symmetric Dirichlet, *i.e.* $\alpha_k = \alpha$
- Now, consider the "bag of marbles" data, with observed data: 1 red, 2 green, 2 light blue, 1 dark blue. Under the same assumptions, what is the probability that $a'_{blue} = 1$ for n' = 1?
- Is there a problem?

Imprecision and s

□ Assumptions

- Prior uncertainty is modelled by an IDMM(s)
- Denote by B_j the event that next observation will be from category c_j (possibly not elementary)

□ Questions

- Find the prior lower and upper probabilities, $\underline{P}(B_j)$ and $\overline{P}(B_j)$.
- After observing data a, find the posterior lower and upper probabilities, $\underline{P}(B_j|a)$ and $\overline{P}(B_j|a)$.
- Define the imprecision about an event by $\Delta(\cdot) = \overline{P}(\cdot) \underline{P}(\cdot)$. What are $\Delta(B_j)$ and $\Delta(B_j|a)$?
- Compute the ratio of these two imprecisions. When is it equal to 2, to 10?
- Apply the preceding results to the "bag of marbles" example, with B_j being the event that the next observation is blue.

Confirming a universal law

□ Assumptions

- There are K basic categories
- Amongst n observations, all were found to belong to c_1 , *i.e.* $a_1 = n$
- You envisage to collect n' more data, and you consider the hypothesis H_0 that these future data might all be of type c_1 again, *i.e.* that $a'_1 = n'$.

□ 1) Bayesian answers

- Under a standard Bayesian model, with prior $Diri(\alpha)$, what is the expression $P = P_{\alpha}(H_0|a)$?
- What is the value of P under Haldane's model,
 i.e. α = 0?
- What is the value of P under Bayes-Laplace's model, *i.e.* α = 1, assuming K = 2, and then K = 3?

• Under Bayes-Laplace's model, find the expressions of P for the special cases, n' = 1, n' = n and $n' \to \infty$, assuming either K = 2 or K = 3.

□ 2) IDMM answers

- Under the prior IDMM(s), find the lower and upper probabilities of the same event: $\underline{P} = \underline{P}(H_0|a)$ and $\overline{P} = \overline{P}(H_0|a)$.
- What are these L&U probabilities for an IDMM with s = 1, s = 2, and as $s \rightarrow 0$ or $s \rightarrow \infty$?
- Under the IDMM with s = 1, find the expressions of \underline{P} and \overline{P} for the special cases, n' = 1, n' = n and $n' \to \infty$.
- Do we need to make assumptions about K?
- Compare these results with those of part 1.

□ 3) Iguana example:

Bernardo & Smith (1994) consider the example of n = 90 iguanas all found with the same skin pattern on an island where the overall number of iguanas is estimated to be $n^* = n + n' = 100,000$. Find the preceding Bayesian and IDMM(s = 1) answers for that example.