EXERCICES ABOUT

IMPRECISE PREDICTIVE INFERENCE ABOUT
CATEGORICAL DATA

Bayes Theorem

\square Assumptions

- a prior $\boldsymbol{\theta} \sim \operatorname{Diri}(\boldsymbol{\alpha})$ for the case $K=2$
- data \boldsymbol{a} with sampling distribution $\boldsymbol{a} \mid \boldsymbol{\theta} \sim \operatorname{Mn}(n, \boldsymbol{\theta})$

\square 1) Show that

- $\theta_{1} \mid \boldsymbol{a} \sim \operatorname{Beta}(\boldsymbol{a}+\boldsymbol{\alpha})$
- $a_{1} \sim \operatorname{BeBi}(n ; \boldsymbol{\alpha})$

Hint: Use Bayes' theorem, and the equivalence between Beta and Diri for $K=2$.
\square 2) Show,

- assuming future data \boldsymbol{a}^{\prime} sampled independently from the same population, i.e. $\boldsymbol{a}^{\prime} \sim \operatorname{Mn}\left(n^{\prime} ; \boldsymbol{\theta}\right)$,
- that $a_{1}^{\prime} \mid \boldsymbol{a} \sim \operatorname{BeBi}\left(n^{\prime} ; \boldsymbol{a}+\boldsymbol{\alpha}\right)$

Hint: Use Bayes' theorem a second time.

Expressions for the DiMn

\square Assumptions: Consider a composition $a=$ (a_{1}, \ldots, a_{K}), with $\sum_{k} a_{k}=n$ whose probability distribution is a Dirichlet-multinomial:

$$
\boldsymbol{a} \sim \operatorname{DiMn}(n ; \boldsymbol{\alpha})
$$

\square 1) Equivalent forms

Show the equivalence between the three forms of the DiMn for a, in terms of

- generalized binomial coefficients
- gamma functions
- ascending factorials

See: Mathematical functions \& coefficients
\square 2) Application: Simplify the formula (defined for any integer n and any reals $0<\alpha<s$)

$$
\sum_{a=0}^{n}\binom{n}{a} \alpha^{[a]}(s-\alpha)^{[n-a]},
$$

\square 3) Sequences and compositions

Consider the case $K=2$ and an observed sequence of length $n=4, S=\left(c_{1}, c_{1}, c_{2}, c_{1}\right)$, yielding the counts $a_{1}=3, a_{2}=1$.

- How many sequences yield the same composition in counts? Same question for any composition (a_{1}, a_{2})?
- What is the probability $P(S)$ of sequence S ?
- Express $P(S)$ as the ratio of two products. Can you find a graphical interpretation of that result?

Hint: Represent any sequence as a path on a plane with a_{1} on the x-axis and a_{2} on the y-axis.

Distribution DiMn Particular cases

\square Assumptions

- Consider that the composition in counts, over K categories, \boldsymbol{a} follows a $\operatorname{DiMn}(n ; \boldsymbol{\alpha})$

\square 1) Special case $\alpha=1$:

- Show that, in this case, \boldsymbol{a} has a uniform distribution over its domain \mathcal{A}.
- From previous result, deduce the number of possible compositions of size n over K categories, i.e. the cardinal of \mathcal{A}. Express this number as a binomial coefficient.

\square 2) Towards Haldane

- For the case $K=2$ and $n=2$, what are the possible compositions a
- For each \boldsymbol{a}, give the expression of $P(\boldsymbol{a})$
- Calculate this distribution for $\alpha_{1}=\alpha_{2}=\frac{1}{2}$, for $\alpha_{1}=\alpha_{2}=\frac{1}{10}$
- What happens if $\alpha_{1}=\alpha_{2}$ tends to 0 ?

DiMn: pooling and restriction

\square Assumptions

- Consider $\boldsymbol{a} \sim \operatorname{DiMn}(n ; \boldsymbol{\alpha})$ for $K=3$, i.e. $\boldsymbol{a}=$ a_{1}, a_{2}, a_{3} with fixed $\sum_{k} a_{k}=n$
- Let $a_{23}=a_{2}+a_{3}$ be the count of the pooled category $c_{23}=\left(c_{2}\right.$ or $\left.c_{3}\right)$
\square 1) Express the overall distribution on $a, P(a)$, as a function of the marginal $P\left(a_{1}, a_{23}\right)$
\square 2) What does this entail for the following distributions?
- $P\left(a_{1}, a_{23}\right)$
- $P\left(a_{2}, a_{3} \mid a_{23}\right)$
\square 3) Recursion: The preceding example can be viewed as (i) defining a tree underlying the set of categories $C, T=\left\{c_{1}, c_{23}=\left\{c_{2}, c_{3}\right\}\right\}$, and (ii) "cutting" tree T at node c_{23}. What would be obtained for $K=5$ categories underlied by tree $T=\left\{c_{1234}=\left\{c_{1}, c_{234}=\left\{c_{2}, c_{3}, c_{4}\right\}\right\}, c_{5}\right\}$

Bayesian prediction

\square Assume the following prior and posterior predictive distributions

- K is fixed
- $\boldsymbol{a} \sim \operatorname{DiMn}(n ; \boldsymbol{\alpha})$
- $\boldsymbol{a}^{\prime} \sim \operatorname{DiMn}\left(n^{\prime} ; \boldsymbol{a}+\boldsymbol{\alpha}\right)$

\square Answer the following questions

- First, consider the prior prediction for $n=1$. What is the probability that $a_{k}=1$?
- Now, consider the posterior prediction for $n^{\prime}=$ 1. What is the probability that $a_{k}^{\prime}=1$?
- Same questions, with assuming also that the prior is a symmetric Dirichlet, i.e. $\alpha_{k}=\alpha$
- Now, consider the "bag of marbles" data, with observed data: 1 red, 2 green, 2 light blue, 1 dark blue. Under the same assumptions, what is the probability that $a_{\text {blue }}^{\prime}=1$ for $n^{\prime}=1$?
- Is there a problem?

Imprecision and s

\square Assumptions

- Prior uncertainty is modelled by an IDMM(s)
- Denote by B_{j} the event that next observation will be from category c_{j} (possibly not elementary)

\square Questions

- Find the prior lower and upper probabilities, $\underline{P}\left(B_{j}\right)$ and $\bar{P}\left(B_{j}\right)$.
- After observing data \boldsymbol{a}, find the posterior lower and upper probabilities, $\underline{P}\left(B_{j} \mid \boldsymbol{a}\right)$ and $\bar{P}\left(B_{j} \mid \boldsymbol{a}\right)$.
- Define the imprecision about an event by $\Delta(\cdot)=$ $\bar{P}(\cdot)-\underline{P}(\cdot)$. What are $\Delta\left(B_{j}\right)$ and $\Delta\left(B_{j} \mid \boldsymbol{a}\right)$?
- Compute the ratio of these two imprecisions. When is it equal to 2 , to 10 ?
- Apply the preceding results to the "bag of marbles" example, with B_{j} being the event that the next observation is blue.

Confirming a universal law

\square Assumptions

- There are K basic categories
- Amongst n observations, all were found to belong to c_{1}, i.e. $a_{1}=n$
- You envisage to collect n^{\prime} more data, and you consider the hypothesis H_{0} that these future data might all be of type c_{1} again, i.e. that $a_{1}^{\prime}=n^{\prime}$.

\square 1) Bayesian answers

- Under a standard Bayesian model, with prior $\operatorname{Diri}(\boldsymbol{\alpha})$, what is the expression $P=P_{\boldsymbol{\alpha}}\left(H_{0} \mid \boldsymbol{a}\right)$?
- What is the value of P under Haldane's model, i.e. $\alpha=0$?
- What is the value of P under Bayes-Laplace's model, i.e. $\alpha=1$, assuming $K=2$, and then $K=3$?
- Under Bayes-Laplace's model, find the expressions of P for the special cases, $n^{\prime}=1$, $n^{\prime}=n$ and $n^{\prime} \rightarrow \infty$, assuming either $K=2$ or $K=3$.

\square 2) IDMM answers

- Under the prior $\operatorname{IDMM}(s)$, find the lower and upper probabilities of the same event: $\underline{P}=$ $\underline{P}\left(H_{0} \mid \boldsymbol{a}\right)$ and $\bar{P}=\bar{P}\left(H_{0} \mid \boldsymbol{a}\right)$.
- What are these L\&U probabilities for an IDMM with $s=1, s=2$, and as $s \rightarrow 0$ or $s \rightarrow \infty$?
- Under the IDMM with $s=1$, find the expressions of \underline{P} and \bar{P} for the special cases, $n^{\prime}=1$, $n^{\prime}=n$ and $n^{\prime} \rightarrow \infty$.
- Do we need to make assumptions about K ?
- Compare these results with those of part 1.

\square 3) Iguana example:

Bernardo \& Smith (1994) consider the example of $n=90$ iguanas all found with the same skin pattern on an island where the overall number of iguanas is estimated to be $n^{*}=n+n^{\prime}=100,000$. Find the preceding Bayesian and $\operatorname{IDMM}(s=1)$ answers for that example.

