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INTRODUCTION
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The “Bag of marbles” example

� “Bag of marbles” problems (Walley, 1996)

• “I have . . . a closed bag of coloured marbles.

I intend to shake the bag, to reach into it

and to draw out one marble. What is the

probability that I will draw a red marble?”

• “Suppose that we draw a sequence of marbles

whose colours are (in order):

blue, green, blue, blue, green, red.

What conclusions can you reach about the

probability of drawing a red marble on a future

trial?”

� Two problems of predictive inference

• Prior prediction, before observing any item

• Posterior prediction, after observing n items

� Inference from a state of prior ignorance

about the proportions of the various colours
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Categorical data (1)

� Categories

• Set of K of categories or types

C = {c1, . . . , cK}

• Categories ck are exclusive and exhaustive

• Possible to add an extra category: “other

colours”, “other types”

� Categorisation is partly arbitrary

Red Others

J = K − 1 1

Red Others

J = 1 K − 1
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Categorical data (2)

� Data

• Set, or sequence, I of n observations, items,

individuals, etc.

• For each individual i ∈ I, we observe the cor-

responding category

I → C = {c1, . . . , cK}
i 7→ ck

• Observed composition, in counts:

a = (a1, . . . , aK)

with
∑

k ak = n

• Observed composition, in frequencies:

f = (f1, . . . , fK) =
a

n

with
∑

k fk = 1

� Compositions: order considered as not im-

portant
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Statistical inference problems (1)

� Inference about what?

• Predictive inference: About future counts or

frequencies in n′ future observations

a′ = (a′1, . . . , a′K)

f ′ = (f ′
1, . . . , f ′

K) = a′/n′

n′ ≥ 1 Predictive inference (general)

n′ = 1 Immediate prediction

• Parametric inference: About true/parent counts

or frequencies (parameters) in population of

. . . size N < ∞

A = (A1, . . . , AK)

θ = (θ1, . . . , θK) = A/N

. . . size N = ∞

θ = (θ1, . . . , θK)
∑

k

θk = 1
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Statistical inference problems (2)
Prior vs. posterior inferences

� Prior inferences

• n = 0 (no data yet)

• Unconditional

• Describes prior uncertainty about f ′ or θ

• Issue: formalize prior ignorance

� Posterior inferences

• n ≥ 1 (data a are available)

• Conditional on a

• Describes what can be infered about f ′ or θ

from the prior state + the knowledge of a
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Relating past & future data (1)
Random sampling

� Random sampling

• Population with a fixed, but unknown, true

composition in frequencies

θ = (θ1, . . . , θK)

• Data (observed & future): random samples

from the same population

• Ensures that the data are representative of

the population w.r.t. C

� Finite/infinite population

• Multiple-hypergeometric (N finite)

• Multinomial (N = ∞)

� Stopping rule

• Fixed n

• Fixed ak, “negative” sampling

• More complex stopping rules

� These elements define a sampling model
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Relating past & future data (2)
Exchangeabiblity

� Exchangeability

• Consider any sequence S of n∗ = n + n′ ob-

servations,

S = (c1, . . . , cn, cn+1, . . . , cn∗)

having composition

a∗ = (a∗1, . . . , a∗K)

• Assumption of order-invariance, or permutation-

invariance

∀ S, P(S | a∗) = constant

� Equivalence with MHyp sampling

Induced P(a|a∗) is the same as if data with counts

a were obtained from random sampling from a

population having counts a∗ = a + a′

� Direct link: No need to invoke unknown pa-

rameters θ of a larger population
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A statistical challenge

� Model prior ignorance

• Model prior ignorance about θ, or a and a∗

• Arbitrariness of C and K, both may vary as

data items are observed

• Model prior ignorance about both the set C

and the number K of categories

� Make reasonable posterior inferences

from such a state of prior ignorance

• Idea of “objective” methods: “let the data

speak for themselves”

• Frequentist methods

• Objective Bayesian methods

� “Reasonable”: Several desirable principles
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Desirable principles / properties (1)

� Prior ignorance

• Symmetry (SP): Prior uncertainty should be

invariant w.r.t. permutations of categories

• Embedding pcple (EP): Prior uncertainty

should not depend on refinements or coarsen-

ings of categories

� Independence from irrelevant information

of posterior inferences

• Stopping rule pcple (SRP): Inferences should

not depend on the stopping rule, i.e. on data

that might have occurred but have actually

not

• Likelihood pcple (LP): Inferences should de-

pend on the data through the likelihood func-

tion only

• Representation invariance (RIP): Posterior in-

ferences should not depend on refinements or

coarsenings of categories
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Desirable principles / properties (2)

� Reasonable account of uncertainty in prior

and posterior inferences

� Consistency requirements when considering

several inferences

• Avoiding sure loss (ASL): Probabilistic as-

sessments, when interpreted as betting dis-

positions, should not jointly lead to a sure

loss

• Coherence (CP): Stronger property of consis-

tency of all probabilistic assessments

� Frequentist interpretation(s)

• Repeated sampling pcple (RSP): Probabilities

should have an interpretation as relative fre-

quencies in the long run

� See Walley, 1996; 2002
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Methods for statistical inference:
Frequentist approach

� Frequentists methods

• Based upon sampling model only e.g. a|θ

• Probabilities can be assimilated to long-run

frequencies

• Significance tests, confidence limits and in-

tervals (Fisher, Neyman & Pearson)

� Difficulties of frequentist methods

• Depend on the stopping rule. Hence do not

obey SRP, nor LP

• Not conditional on observed data; May have

relevant subsets

• For multidimensional parameters’ space: ad-

hoc and/or asymptotic solutions to the prob-

lem of nuisance parameters
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Methods for statistical inference:
Objective Bayesian approach (1)

� Bayesian methods

• Two ingredients: sampling model + prior

• Conjugate priors: Dirichlet for multinomial

data, Dirichlet-multinomial for multiple-hyper-

geometric data

• Depend on the sampling model through the

likelihood function only

� Objective Bayesian methods

• Data analysis goal: let the data say what they

have to say about unknown parameters

• Priors formalizing “prior ignorance”

• objective Bayesian: “non-informative” priors,

etc. (e.g. Kass, Wasserman, 1996)

• Exact or approximate frequentist reinterpre-

tations: “matching priors” (e.g. Datta, Ghosh,

1995)
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Methods for statistical inference:
Objective Bayesian approach (2)

� Difficulties of Bayesian methods for cate-

gorical data

Several priors proposed for prior ignorance, but

none satisfies all desirable principles.

• Inferences often depend on C and/or K

• Some solutions violate LP (Jeffreys, 1946)

• Some solutions can generate incoherent infer-

ences (Berger, Bernardo, 1992)

• If K = 2, uncertainty about next observation

(case n′ = 1) is the same whether a1 = a2 = 0

(prior) or a1 = a2 = 100 (posterior)

P(a′ = (1,0)) = P(a′ = (1,0) | a)

� Only approximate agreement between fre-

quentist methods and objective Bayesian meth-

ods, for categorical data
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The IDM in brief

� Model for parametric inference for categor-

ical data

Proposed by Walley (1996), generalizes the IBM
(Walley, 1991).

Inference from data a = (a1, . . . , aK), catego-
rized in K categories C, with unknown chances

θ = (θ1, . . . , θK).

� Imprecise probability model
Prior uncertainty about θ expressed by a set of

Dirichlet’s.

Posterior uncertainty about θ|a then described by
a set of updated Dirichlet’s.

Generalizes Bayesian inference, where prior/ pos-
terior uncertainty is described by a single Dirich-

let.

� Imprecise U&L probabilities, interpreted as
reasonable betting rates for or against an event.

� Models prior ignorance about θ, K and C

� Satisfies desirable principles for inferences

from prior ignorance, contrarily to alternative fre-
quentist and objective Bayesian approaches.
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The IDMM in brief

� Model for predictive inference for categori-

cal data

Proposed by Walley, Bernard (1999), also partly

studied in (Walley, 1996).

Inference about future data a′ = (a′1, . . . , a′K) from

observed data a = (a1, . . . , aK), categorized in K

categories C.

� Two alternative, equivalent views

• A predictive model derived from the paramet-

ric IDM

• A model of its own, modeling only observ-

ables: available data a and future data a′

� Imprecise probability model

Prior uncertainty about a expressed by a set of

Dirichlet-multinomial distributions.

Posterior uncertainty about a′|a then described

by a set of updated Dirichlet-multinomial distri-

butions.

� Models prior ignorance about a, K and C
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THE BAYESIAN APPROACH
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Bayesian inference

� Focus on the Bayesian approach since

• Bayesian, precise: a single Dirichlet prior on

θ yields a single Dirichlet posterior on θ|a

(PDM)

• IP-model: a prior set of Dirichlet’s yields a

posterior set of Dirichlet’s (IDM)

� · · · and for predictive inferences since

• Bayesian, precise: a single Dirichlet-Multinomial

(DiMn) prior on a∗ yields a single DiMn pos-

terior on a′|a (PDMM)

• IP-model: a prior set of DiMn’s yields a pos-

terior set of DiMn’s (IDMM)

� Goal

• Sketch Bayesian approach to inference

• Specifically: objective Bayesian models

• Indicate shortcomings of these models
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Three sampling models

� Multinomial data

• Random sampling

• Infinite population, N = ∞

• Data have a multinomial (Mn) likelihood

� Multiple-hypergeometric data

• Random sampling

• Finite population, N < ∞

• Data have a multiple-hypergeometric (MHyp)

likelihood

� Exchangeable data

• Data a generated by an exchangeable process

with counts a∗ = a + a′

• Data have a MHyp likelihood too

� Hypotheses

• Set C, and number of categories, K, are con-

sidered as known and fixed
21



Inference from multinomial data

� Multinomial data

• Elements of population are categorized in K
categories from set C = {c1, . . . , cK}.

• Unknown true chances θ = (θ1, . . . , θK), with

θk ≥ 0 and
∑

k θk = 1, i.e. θ ∈ Θ = S(1, K).

• Data are a random sample of size n from the

population, yielding counts a = (a1, . . . , aK),

with
∑

k ak = n.

� Multinomial sampling distribution

P(a|θ) =
(n

a

)

θ
a1
1 . . . θ

aK
K

When seen as a function of θ, leads to the likelihood

function

L(θ|a) ∝ θ
a1
1 . . . θ

aK
K

� Same likelihood is obtained from observing a,

for a variety of stopping rules: n fixed, ak fixed,

etc.
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Bayesian inference (1):
a learning model

� General scheme











Prior P(θ)
+

Sampling P(a|θ)
−→











Posterior P(θ|a)
+

Prior predictive P(a)

� Iterative process











Prior’ P(θ|a)
+

Sampl.’ P(a′|θ,a)
−→











Posterior’ P(θ|a′, a)
+

Post. pred. P(a′|a)

� Learning model about

• unknown chances: P(θ) updated to P(θ|a)

• future data: P(a) updated to P(a′|a)
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Bayesian inference (2)

� Continuous parameters space

Since the parameters space, Θ, is continuous,

probabilities on θ, P(θ) and P(θ|a), are defined

via densities, denoted h(θ) and h(θ|a)

� Bayes’ theorem (or rule)

h(θ|a) =
h(θ) P(a|θ)

∫

Θ h(θ) P(a|θ) dθ

=
h(θ) L(θ|a)

∫

Θ h(θ) L(θ|a) dθ

� Likelihood principle satisfied if prior h(θ) is

chosen independently of P(a|θ)

� Conjugate inference

• Prior h(θ) and posterior h(θ|a) are from the

same family

• For multinomial likelihood: Dirichlet family
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Dirichlet prior for θ

� Dirichlet prior

Prior uncertainty about θ is expressed by

θ ∼ Diri(α)

with prior strengths

α = (α1, . . . , αK)

such that αk > 0,
∑

k αk = s

� Dirichlet distribution

Density defined for any θ ∈ Θ, with Θ = S(1, K)

h(θ) =
Γ(s)

Γ(α1) · · ·Γ(αK)
θ
α1−1
1 · · · θ

αK−1
K

� Generalisation of the Beta distribution

(θ1,1 − θ1) ∼ Diri(α1, α2) ⇐⇒ θ1 ∼ Beta(α1, α2)
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Alternative parameterization

� Dirichlet prior on θ

θ ∼ Diri(α)

� Alternative parameterization in terms of s,

the total prior strength, and the relative prior

strengths

t = (t1, . . . , tK) = α/s

with tk > 0,
∑

k tk = 1, i.e. t ∈ S?(1, K)

Hence,

θ ∼ Diri(st)

� Prior expectation of θk

E(θk) = tk

� Interpretation

• t determines the center of the distribution

• s determines its dispersion / concentration
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Dirichlet posterior for θ|a

� Dirichlet posterior

Posterior uncertainty about θ|a is expressed by

θ|a ∼ Diri(a + α)

∼ Diri(a + st)

Parameters/strengths of the Dirichlet play a role

of counters: the prior strength αk is incremented

by the observed count ak to give the posterior

strength ak + αk

� Posterior expectation of θk

E(θk|a) =
ak + αk

n + s

=
nfk + stk

n + s

i.e. a weighted average of prior expectation, tk,

and observed frequency, fk, with weights s and n
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Prior predictive distribution

� From Bayes theorem

h(θ|a) =
h(θ) P(a|θ)

∫

Θ h(θ) P(a|θ) dθ

� Prior predictive distribution on a

P(a) =

∫

Θ
h(θ) P(a|θ) dθ

=
h(θ) P(a|θ)

h(θ|a)

which yields

P(a) =

∏

k

(

ak+αk−1
ak

)

(

n+s−1
n

)

with
(

m+x−1
m

)

= Γ(m+x)
m!Γ(x)

, for any positive

integer m ≥ 0, and any real x > 0

� Dirichlet-multinomial distribution

a ∼ DiMn(n;α)
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Posterior predictive distribution

� Similarly, from Bayes theorem

P(a′|a) =
h(θ|a) P(a′|θ,a)

h(θ|a′, a)

=
h(θ|a) P(a′|θ)

h(θ|a′ + a)

which yields

P(a′|a) =

∏

k

(a′k+ak+αk−1

a′k

)

(

n′+n+s−1
n′

)

� Dirichlet-multinomial posterior

a′|a ∼ DiMn(n′;a + α)

� Interpretation in terms of “counters”

Here too, prior strengths α are updated into pos-

terior strengths a + α
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Equivalence of 3 models
for predictive inference

� Multinomial + Dirichlet model











θ ∼ Diri (Prior)
a|θ ∼ Mn (Samp.)
a′|θ,a ∼ Mn (Samp.)

−→











a ∼ DiMn
+

a′|a ∼ DiMn

� M.-Hypergeometric + DiMn model











A ∼ DiMn (Prior)
a|A ∼ MHyp (Samp.)
a′|A, a ∼ MHyp (Samp.)

−→











a ∼ DiMn
+

a′|a ∼ DiMn

� Exchangeability + DiMn model











a∗ ∼ DiMn (Prior)
a|a∗ ∼ MHyp (Samp.)
a′|a∗, a ∼ MHyp (Samp.)

−→











a ∼ DiMn
+

a′|a ∼ DiMn
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Bayesian answers to inference (1)
Parametric problems

� Prior uncertainty: P(θ)

� Posterior uncertainty: P(θ|a)

For drawing all inferences, from observed data to

unknown parameters

� Inferences about θ

• Expectations, E(θk|a); Variances, Var(θk|a);

etc.

• Any event about θ: P(θ ∈ Θ∗ | a)

� Inferences about real-valued λ = g(θ)

• Marginal distribution function: h(λ|a)

• Expectation, variance: E(λ|a), Var(λ|a)

• Cdf: Fλ(u) = P(λ < u|a) =
∫ u
−∞ h(λ|a) dλ

• Credibility intervals: P(λ ∈ [u1;u2] | a)

• Any event about λ
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Bayesian answers to inference (2)
Predictive problems

� Prior uncertainty: P(a) or P(f)

� Posterior uncertainty: P(a′|a) or P(f ′|a)

For drawing all inferences, from observed data to

future data

� Inferences about f ′

• Expectations, E(f ′
k|a); Variances, Var(f ′

k|a);

etc.

• Any event about f ′: P(f ′ ∈ Θ∗ | a)

� Inferences about real-valued λ = g(f ′)

• Marginal distribution function: P(λ|a)

• Expectation, variance: E(λ|a), Var(λ|a)

• Cdf: Fλ(u) = P(λ < u|a) =
∑

λ<u P(λ|a)

• Credibility intervals: P(λ ∈ [u1;u2] | a)

• Any event about λ
32



IMPORTANT DISTRIBUTIONS
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Relevant distributions

� Parametric inference on infinite population

• Dirichlet (Diri), any K

• Beta (Beta), K = 2

� Predictive inference on future n′ data

• Dirichlet-Multinomial (DiMn), any K

• Beta-Binomial (BeBi), K = 2

� Links

n′ n′ → ∞

K = 2 BeBi Beta

K DiMn Diri
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Beta distribution

� Consider the variable

θ ∈ [0,1]

and the hyper-parameters

α1 > 0, α2 > 0

or s = α1 + α2, t1 = α1/s, t2 = α2/s,

with s > 0, t1 > 0, t2 > 0, t1 + t2 = 1

� Beta density

θ ∼ Beta(α1, α2) = Beta(st1, st2)

h(θ) =
Γ(s)

Γ(α1)Γ(α2)
θα1−1(1 − θ)α2−1

∝ θ
α1−1
1 (1 − θ)α2−1

� Expectation and variance

E(θ) = α1/s = t1

Var(θ) =
α1α2

s2(s + 1)
=

t1t2
s + 1
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Dirichlet distribution

� Consider

θ = (θ1, . . . , θK) θ ∈ Θ = S(1, K)

t = (t1, . . . , tK) t ∈ T = S?(1, K)

and s > 0, or α = st, αk > 0

� Dirichlet density

θ ∼ Diri(α) = Diri(st)

h(θ) =
Γ(s)

∏

k Γ(αk)
θ
α1−1
1 . . . θ

αK−1
K

∝ θ
α1−1
1 . . . θ

αK−1
K

� Generalization of Beta distribution (K = 2)

(θ1, θ2) ∼ Diri(α1, α2) ⇐⇒ θ1 ∼ Beta(α1, α2)

� Basic properties

• E(θk) = tk

• s determines dispersion of distribution
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Examples of Dirichlet’s

� Example 1

Diri(1,1, . . . ,1) is uniform on S(1, K)

� Example 2

(θ1, θ2, θ3) ∼ Diri(10,8,6)

1,0,0

0,1,0

0,0,1

(Highest density contours: [100%,90%, . . . ,10%])
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Properties of the Dirichlet

General properties given on an example.

Assume (θ1, . . . , θ5) ∼ Diri(α1, . . . , α5). Then,

� Pooling property

(θ1, θ234, θ5) ∼ Diri(α1, α234, α5),

where pooling categories amounts to add cor-

responding chances, θ234 = θ2 + θ3 + θ4, and

strengths, α234 = α2 + α3 + α4.

� Restriction property

(θ234
2 , θ234

3 , θ234
4 ) ∼ Diri(α2, α3, α4),

where θ234
2 = θ2/θ234, etc., are conditional chances.

� Generalizes to any tree underlying the set C.
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Tree representation of categories

c2 c3 c4

c234c1

c1234 c5

c12345
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Beta-Binomial distribution (1)

� Notation

(a1, a2) ∼ BeBi(n;α1, α2)

for a1 and a2 positive integers, with a1 + a2 = n

and α1 > 0 and α2 > 0, with α1 + α2 = s

� Probability distribution function

P(a1, a2) =

(

a1+α1−1
a1

)(

a2+α2−1
a2

)

(

n+s−1
n

)

=
Γ(a1 + α1)

a1!Γ(α1)

Γ(a2 + α2)

a2!Γ(α2)

n!Γ(s)

Γ(n + s)

=
( n

a1

) α1
[a1]α2

[a2]

s[n]
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Beta-Binomial distribution (2)

� Expectation & variance of a1 and f1 = a1/n

E(a1) = n
α1

s
= nt1

E(f1) = t1

Var(f1) =
t1(1 − t1)

s + 1
×

n + s

n

where t1 = α1/s, 1 − t1 = t2 = α2/s

� Convergence of distribution of f1

t1 → Beta(α1, α2)

when n → ∞
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Dirichlet-Multinomial distribution

� Notation

a ∼ DiMn(n;α)

for a = (a1, . . . , aK), ak positive ints,
∑

k ak = n

and α = (α1, . . . , αK), αk > 0,
∑

k αk = s

� Probability distribution function

P(a) =

∏

k

(

ak+αk−1
ak

)

(

n+s−1
n

)

=
n!Γ(s)

Γ(n + s)

∏

k

Γ(ak + αk)

ak!Γ(αk)

=
(n

a

)

∏

k αk
[ak]

s[n]
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Mathematical functions
or coefficients

� Binomial coefficient
(n

a

)

=
n!

a!(n − a)!

for n, a integers, n ≥ a

� Multinomial coefficients
(n

a

)

=
n!

a1! · · · ak!

for a = (a1, . . . , aK) integers,
∑

k ak = n

� Generalized binomial coefficients

(m + x − 1

m

)

=
Γ(m + x)

m! Γ(x)

for integer m ≥ 0, and real x > 0

� Ascending factorial (from Appell ?)

x[m] = x(x + 1) · · · (x + m − 1), x[0] = 1

for integer m ≥ 0, and real x
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OBJECTIVE BAYESIAN MODELS
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Objective Bayesian models

� Priors proposed for objective inference

Idea: α expressing prior ignorance about θ or a∗

(Kass & Wasserman, 1996; Bernard, 1996)

� For direct (Mn or MHyp) sampling

Almost all proposed solutions for fixed n are sym-

metric Dirichlet priors, i.e. tk = 1/K:

• Haldane (1948): αk = 0 (s = 0)

• Perks (1947): αk = 1
K (s = 1)

• Jeffreys (1946): αk = 1
2 (s = K/2)

• Bayes-Laplace, uniform: αk = 1 (s = K)

• Berger-Bernardo reference priors

� For negative (Mn or MHyp) sampling

Some proposed solutions for fixed ak are non-

symmetric Dirichlet priors
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Which principles are satisfied? (1)

� Prior ignorance

• Symmetry (SP). Yes: for all usual symmetric

priors with tk = 1/K. No: for some priors

proposed for negative-sampling.

• Embedding Pcple (EP). Yes: for Haldane’s

prior. No: for all other priors

� Internal consistency

• Coherence (CP), including ASL. Yes: if prior

is proper. No: for Haldane’s improper prior.

� Frequentist interpretation

• Repeated sampling pcple (RSP). No in gen-

eral. Yes asymptotically. Exact or conserva-

tive agreement for some procedures.
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Which principles are satisfied? (2)

� Invariance, Independence from irrelevant

information

• Likelihood pcple (LP), including SRP. Yes, if

prior (P(θ) or P(a∗)) chosen independently

of sampling model (P(a|θ) or P(a|a∗)). No,

for Jeffreys’ or Berger-Bernardo’s priors

• Representation invariance (RIP). Yes: Hal-

dane. No: all other priors

• Invariance by reparameterisation. Yes, for Jef-

freys’ or Berger-Bernardo’s priors

� Difficulties of objective Bayesian approach

None of these solutions simultaneously satisfies

all desirable principles for inferences from prior

ignorance
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Focus on Haldane’s prior

� Satisfies most principles

• Satisfies most of the principles: symmetry,

LP, EP and RIP

• Incoherent because of improperness, but can

be extended to a coherent model (Walley,

1991)

� But

• Improper prior

• Improper posterior if some ak = 0

• Too data-glued:

If ak = n = 1, essentially says that θk = 1, or

that a′k = n′, with probability 1.

If ak = 0, essentially says that θk = 0, or that

a′k = 0 for any n′, with probability 1.

• Doesn’t give a reasonable account of uncer-

tainty.

� Limit case of the ID(M)M
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FROM PRECISE

BAYESIAN MODELS

TO AN IMPRECISE

PROBABILITY MODEL
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Precise Bayesian Dirichlet model

� Elements of a (precise) standard Bayesian

model

• Prior distribution: P(θ), θ ∈ Θ

• Sampling distribution: P(a|θ), a ∈ A, θ ∈ Θ

• Posterior distribution: P(θ|a), θ ∈ Θ, a ∈ A,

obtained by Bayes’ theorem

� Elements of a precise Dirichlet model

• Dirichlet P(θ)

• Multinomial P(a|θ)

• Dirichlet P(θ|a)
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Probability vs. Prevision (1)

� Three distributions

P(θ) P(a|θ) P(θ|a)

These are probability distributions, which allocate

a mass probability (or a probability density) to any

event relative to θ and/or a.

� From probability of events to previsions of

gambles

Since each one is a precise model, each defines a

unique linear prevision for each possible gamble.

So, each P(·) or P(·|·) can be assimilated to a

linear prevision

� Domains of these linear previsions

Here, we always consider all possible gambles, so

these linear previsions are each defined on the

linear space of all gambles (on their respective

domains).
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Probability vs. Prevision (2)
Remarks

� Remark on terms used

• Random quantity = Gamble

• Expectation = Prevision

� Previsions of gambles are more fundamen-

tal than probabilities of events

• Precise world:

Previsions ⇐⇒ Probabilities

• Imprecise world:

Previsions =⇒ Probabilities

� See (de Finetti, 1974-75; Walley, 1991)
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Coherence of a
standard Bayesian model

� Coherence of these linear previsions

• If prior is proper, then P(θ) is coherent

• P(a|θ) always coherent

• If prior is proper, then posterior is proper, and

hence P(θ|a) is coherent

� Joint coherence (Walley, 1991, Thm. 7.7.2)

• The linear previsions, P(θ), P(a|θ) and P(θ|a)

are jointly coherent

• This is assured by generalized Bayes’ rule,

which reduces to Bayes’ rule/theorem in the

case of linear previsions.
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Class of coherent models

� One privileged way of constructing coherent

imprecise posterior probabilities

“. . . is to form the lower envelopes of a class of

standard Bayesian priors and the corresponding

class of standard Bayesian posteriors”

(Walley, 1991, p. 397)

� Lower envelope theorem (id., Thm. 7.1.6)

The lower envelope of a class of separately coher-

ent lower previsions, is a coherent lower prevision.

� Class of Bayesian models (id., Thm. 7.8.1):

Suppose that Pγ(·), Pγ(·|Θ) and Pγ(·|A) consti-

tute a standard Bayesian model, for every γ ∈

Γ. Then their lower envelopes, P(·), P(·|Θ) and

P(·|A) are coherent.
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Towards the IDM & the IDMM

� Building an Imprecise Dirichlet model

• Class of Dirichlet priors

• A single precise Mn sampling model

• Update each prior, using Bayes’ theorem

• Class of Dirichlet posteriors

• Form the associated posterior lower prevision

� . . . or an Imprecise Dirichlet-multinomial

model

• Class of Dirichlet-multinomial priors

• A single precise MHyp sampling model

• Update each prior, using Bayes’ theorem

• Class of Dirichlet-multinomial posteriors

• Form the associated posterior lower prevision
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The IDM & IDMM
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Class of priors
for the IDM & the IDMM

� Models proposed by Walley (1996) for the

IDM, and by Walley, Bernard (1999) for the IDMM.

� Which prior class?

Chosing a Diri or a DiMn prior amounts to chos-

ing prior strengths

α = (α1, . . . , αK)

= s t

= s (t1, . . . , tK)

In the IDM or the IDMM

• Fix the total prior strength s

• Let t take all possible values in T = S?(1, K)

� Yielding which properties?

• Nice properties for modeling prior ignorance

• Satisfy several desirable principles
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Prior and posterior IDM

� Prior IDM

The prior IDM(s) is defined as the set M0 of all

Dirichlet distributions on θ with a fixed total prior

strength s > 0:

M0 = {Diri(st) : t ∈ T = S?(1, K)}

� Posterior IDM

Posterior uncertainty about θ, conditional on a,

is expressed by the set

Mn = {Diri(a + st) : t ∈ T = S?(1, K)}.

� Updating

Each Dirichlet distribution on θ in the set M0 is

updated into another Dirichlet on θ|a in the set

Mn, using Bayes’ theorem.

This procedure guarantees the coherence of in-

ferences (Walley, 1991, Thm. 7.8.1).
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Prior and posterior IDMM

� Prior IDMM

The prior IDMM(s) is defined as the set M0 of

all Dirichlet-Multinomial distributions on a∗ with

a fixed total prior strength s > 0:

M0 = {DiMn(n∗; st) : t ∈ T = S?(1, K)}

� Posterior IDMM

Posterior uncertainty about a′, conditional on a,

is expressed by the set

Mn = {DiMn(n′;a + st) : t ∈ T = S?(1, K)}.

� Updating

Similarly, each DiMn distribution on a∗ in the set

M0 is updated into another DiMn on a′|a in the

set Mn.

� Counts / frequencies

Prior on a∗ or f∗, posterior on a′|a or f ′|a.
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Drawing inferences
from the IDM or IDMM

� Events, indicator functions

• Compute lower & upper (L&U) probabilities

of events of interest

• Substantial conclusion if lower probability is

sufficiently large

� Random quantities

• Compute L&U cumulative distribution func-

tions (cdf)

• Compute L&U expectations

• Compute L&U variances

• Compute L&U credible limits

• Compute (conservative) credible interval hav-

ing a fixed (e.g. 0.95) lower probability

� Optimization problems:

minimizing and maximizing
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L&U probabilities of an event

� Prior L&U probabilities

Consider an event B relative to f ′, and Pst(B)

the prior probability obtained from the distribu-

tion DiMn(n′; st) in M0.

Prior uncertainty about B is expressed by

P(B) and P(B),

obtained by min-/maximization of Pst(B) w.r.t.

t ∈ S?(1, K).

� Posterior L&U probabilities

Denote Pst(B|a) the posterior probability of B

obtained from the prior DiMn(n′; st) in M0, i.e.

the posterior DiMn(n′;a + st) in Mn.

Posterior uncertainty about B is expressed by

P(B|a) and P(B|a),

obtained by min-/maximization of Pst(B|a) w.r.t.

t ∈ S?(1, K).
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Posterior inferences about λ = g(f ′)

� Derived parameter of interest (real-valued)

λ = g(f ′) =























f ′
k

∑

k ykf ′
k

f ′
i/f ′

j
etc.

Inferences about λ can be summarized by

� L&U expectations

E(λ|a) and E(λ|a),

obtained by min-/maximization of Est(λ|a) w.r.t.

t ∈ S?(1, K),

� L&U cumulative distribution fonctions (cdf)

Fλ(u|a) = P(λ ≤ u|a)

Fλ(u|a) = P(λ ≤ u|a)

obtained by min-/maximization of Pst(λ ≤ u|a)

w.r.t. t ∈ S?(1, K),
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Example of L&U cdf’s

� Example from Walley, Bernard (1999)

Data a = (2,12,46,6,0) with n = 66 and K = 5.

Prediction for n′ = 384 (i.e. n∗ = 450), on

λ = g(f∗) = 2f∗
1 + f∗

2 − f∗
4 − 2f∗

5

=
384

450
g(f ′) +

66

450
g(f)

� L&U cdf’s of λ

-0.1 0.0 0.1 0.2 0.3 0.4

0
0
.2

0
.4

0
.6

0
.8

1
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Optimization problems

� Set or convex combinations?

The prior & posterior sets, M0 and Mn, of Diri

or DiMn distributions, are used to define lower

previsions P(·) (by taking lower envelopes). Each

P(·) is equivalent to the class of its dominating

linear previsions, which contains also all convex

combinations of these Diri or DiMn distributions.

� Optimization of Est(λ) or Est(λ|a)

Since E(·) is linear, only requires optimization on

the original set of Dirichlet’s, M0 or Mn.

� Optimization of Fst,λ(u) or Fst,λ(u|a)

Similarly, since F(·) is the probability of the event

(λ ≤ u) (i.e. the expectation of the corresponding

indicator function), optimization only requires the

original set M0 or Mn.

� Optimization attained

• often by corners for t ∈ T , i.e. when some

tk → 1, and all others tend to 0,

• but, not always
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Inferences about θk from the IDM

� Prior L&U expectations and cdf’s

Expectations

E(θk) = 0 and E(θk) = 1

Cdf’s

P(θk ≤ u) = P(Beta(s,0) ≤ u)

P(θk ≤ u) = P(Beta(0, s) ≤ u)

� Posterior L&U expectations and cdf’s

Expectations

E(θk|a) =
ak

n + s
and E(θk|a) =

ak + s

n + s

Cdf’s

P(θk ≤ u|a) = P(Beta(ak + s, n − ak) ≤ u)

P(θk ≤ u|a) = P(Beta(ak, n − ak + s) ≤ u)

� Optimization attained for tk → 0 or tk → 1.

Equivalent to:

Haldane + s extreme observations.
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Extreme ID(M)M’s (1)

� Ignorance vs. Near-ignorance

• Ignorance in the IP theory: vacuous proba-

bilistic statements

• Complete ignorance: ignorance about all gam-

bles and events

• Near-ignorance: ignorance about some gam-

bles and/or events

� Two extremes

• s → 0: Haldane’s model, precise

• s → ∞: vacuous model, maximally imprecise

� Haldane’s model: s → 0

• Unreasonable account of prior uncertainty

• Inferences over-confident with extreme data

• You learn too quickly!
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Extreme ID(M)M’s (2)

� Vacuous model: s → ∞

• The IDM(ssup) contains all IDM’s with s ≤

ssup, i.e. all Dirist, s ≤ ssup, t ∈ T . At the limit,

the IDM(ssup → ∞) contains all Dirichlet’s

• Hence, the IDM(ssup → ∞) contains all mix-

tures (convex combinations) of Dirichlet’s

• But, any distribution on Θ can be approxi-

mated by a finite convex mixture of Dirich-

let’s. So, the IDM(ssup → ∞), contains all

distributions on Θ

• Leads to vacuous statements for any gamble,

and for both prior and posterior inferences

• You never learn anything!

� Conclusions

• s → 0: Too precise!

• s → ∞: Too imprecise!
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Hyperparameter s

� Interpretations of s

• Determines the degree of imprecision in pos-

terior inferences; the larger s, the more cau-

tious inferences are

• s as a number of additional unknown obser-

vations

� Hyperparameter s must be small

• If too high, inferences are too weak

� Hyperparameter s must be large enough

to

• Encompass objective Bayesian inferences:

Haldane: s > 0; Perks: s ≥ 1

Other solutions? Problem: s ≥ K/2 or ≥ K

• Encompass frequentist inferences

� Suggested values: s = 1 or s = 2
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Why does the ID(M)M satisfy the
EP and RIP?

[0, s] [0, s] [0, s]

[0, s][0, s]

[0, s] [0, s]

s

• Diri or DiMn distributions compatible with

any tree. But, under a PDM or PDMM, total

prior strength s scatters when moving down

the tree

• In the IDM or IDMM, all allocations of s to

the nodes are possible (due to imprecision)

• Each sub-tree inheritates the same s

69



PREDICTIVE INFERENCE

FROM THE ID(M)M
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Bayesian inference (recall)

� Apply Bayes’ theorem once











Prior P(θ)
+

Sampling P(a|θ)
−→











Posterior P(θ|a)
+

Prior predictive P(a)

� Apply Bayes’ theorem a second time











Prior’ P(θ|a)
+

Sampl.’ P(a′|θ,a)
−→











Posterior’ P(θ|a′, a)
+

Post. pred. P(a′|a)

� Learning model about

• unknown chances: P(θ) updated to P(θ|a)

• future data: P(a) updated to P(a′|a)
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Bayesian prediction
from a single Diri(α) prior

� Dirichlet-multinomial prior

a ∼ DiMn(n;α)

P(a) =
∏

k

(ak + αk − 1

ak

)

/

(n + s − 1

n

)

=
(n

a

) α1
[a1] · · ·αK

[aK]

s[n]

� Dirichlet-multinomial posterior

a′|a ∼ DiMn(n′;a + α)

P(a′|a) =
∏

k

(a′k + ak + αk − 1

a′k

)

/

(n′ + n + s − 1

n′

)

=
(n′

a′

) (a1 + α1)
[a′1] · · · (aK + αK)[a

′
K]

(n + s)[n
′]
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Beta-binomial marginals
under a single Diri(α) prior

� Beta-binomial marginal prior for ak

ak ∼ BeBi(n; αk, s − αk)

P(ak) =

(

ak+αk−1
ak

)(

n−ak+s−αk−1
n−ak

)

(

n+s−1
n

)

=
( n

ak

)αk
[ak](s − αk)

[n−ak]

s[n]

� Beta-binomial marginal posterior for a′k

a′k|a ∼ BeBi(n′; ak + αk, n − ak + s − αk)

P(a′k|a) =

(

a′k+ak+αk−1

a′k

)(

n′−a′k+n−ak+s−αk−1

n′−a′k

)

(

n′+n+s−1
n′

)

=
(n′

a′k

)(ak + αk)
[a′k](n − ak + s − αk)

[n′−a′k]

(n + s)[n
′]
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Prior predictive distribution
under the IDMM

� Prior prediction about a and f = a/n

Prior uncertainty about a is described by a set of

DiMn distributions:

M0 = {DiMn(n; st) : t ∈ S?(1, K)}

� Vacuous L&U prior expectations of ak and

fk

E(ak) = 0 E(ak) = n

E(fk) = 0 E(fk) = 1

obtained as tk → 0 and tk → 1 respectively

� Vacuous L&U prior cdf’s of ak

(Notation: Fk(u) = P(ak ≤ u), for u = 0, · · · , n)

Fk(u) = 0 if 0 ≤ u < n

Fk(u) = 1 if 0 ≤ u ≤ n

obtained as tk → 1 and tk → 0 respectively
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Posterior predictive distribution
under the IDMM (1)

� Posterior prediction about a′|a and f ′|a

Posterior uncertainty about a′, conditional on a,

is described by the corresponding set of updated

DiMn distributions:

Mn = {DiMn(n′; a + st) : t ∈ S?(1, K)}

� L&U posterior expectations of a′k and f ′
k

E(a′k|a) = n′ ak

n + s
E(a′k|a) = n′ ak + s

n + s

E(f ′
k|a) =

ak

n + s
E(f ′

k|a) =
ak + s

n + s

obtained as tk → 0 and tk → 1 respectively
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Posterior predictive distribution
under the IDMM (2)

� L&U posterior cdf’s of a′k
(Notation: Fk(u|a) = P(a′k ≤ u|a), for u = 0, · · · , n′)

Fk(u|a) =
u

∑

a′k=0

(a′k+ak+s−1

a′k

)(n′−a′k+n−ak−1

n′−a′k

)

(

n′+n+s−1
n′

)

Fk(u|a) =
u

∑

a′k=0

(a′k+ak−1

a′k

)(n′−a′k+n−ak+s−1

n′−a′k

)

(

n′+n+s−1
n′

)

obtained as tk → 1 and tk → 0 respectively

� L&U posterior exp. & cdf’s are obtained

using either

BeBi(n′; ak, n − ak + s)

or BeBi(n′; ak + s, n − ak)
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Pooling categories

� Pooling categories ck and cl into cj

aj = ak + al

a′j = a′k + a′l
αj = αk + αl

� Then

• Each DiMnK, prior or posterior, is transformed

into a DiMnK−1 where cj replaces ck and cl,

with all absolute strengths obtained by sum-

mation.

• Recursively, for any pooling in J < K cate-

gories, the DiMn form and the value of s are

both preserved.

� Thus, in the IDMM,

L&U prior and posterior probabilities for any event

involving pooled counts with J < K categories are

invariant whether we

• Pool first, then apply IDMM(s)

• Apply IDMM(s) first, then pool
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Properties & principles

� Prior ignorance about C and K

• Symmetry in the K categories

• Embedding pcple (EP) satisfied, due to the

pooling property

� Prior near-ignorance about a & f

• Near-ignorance properties: L&U exp. E(ak),

E(fk) and cdf’s Fak(.), F fk
(.) are vacuous

• Many other events, or derived parameters,

have vacuous prior probabilities, or previsions

• But not all, unless s → ∞

� Posterior inferences

• Satisfy coherence (CP)

• Satisfy the likelihood principle (LP)

• Representation invariance (RIP) is satisfied,

for the same reason as EP is
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Frequentist prediction

� “Bayesian and confidence limits for predic-

tions” (Thatcher, 1964)

• Considers binomial or hypergeometric data

(K = 2), a = (a1, n − a1).

• Studies the prediction about n′ future obser-

vations, a′ = (a′1, n′ − a′1).

• Derives lower and upper confidence limits (fre-

quentist) for a′1.

• Compares these confidence limits to credibil-

ity limits (Bayesian) from a Beta prior.

� Main result

• Upper confidence and credibility limits for a′1
coincide iff the prior is Beta(α1 = 1, α2 = 0).

• Lower confidence and credibility limits for a′1
coincide iff the prior is Beta(α1 = 0, α2 = 1).

� IDM with s = 1 !

These two Beta priors are the most extreme priors

under the IDM with s = 1
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Towards the IDMM?
(Thatcher, 1964)

� A “difficulty”

“. . . is there a prior distribution such that both the

upper and lower Bayesian limits always coincide

with confidence limits? . . . In fact there are not

such distributions.” (Thatcher, 1964, p. 184)

� Reconciling frequentist and Bayesian

“. . . we shall consider whether these difficulties

can be overcome by a more general approach to

the prediction problem: in fact, by ceasing to re-

strict ourselves to a single set of confidence limits

or a single prior distribution.” (Thatcher, 1964,

p. 187)
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THE RULE OF SUCCESSION
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Rule of succession problem

� Problem P(a′|a) for n′ = 1

• Prediction about the next observation

• Also called immediate prediction

� A solution to it

• Called a rule of succession

• So many rules for such an (apparently) simple

problem!

� Highly debated problem

• Very early problem in Statistics

• Laplace computing the probability that the

sun will rise tomorrow

� Two types of problems / solutions

• Prior rule, before observing any data

• Posterior rule, after observing some data
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The “Bag of marbles” example

� “Bag of marbles” problems (Walley, 1996)

• “I have . . . a closed bag of coloured marbles.

I intend to shake the bag, to reach into it

and to draw out one marble. What is the

probability that I will draw a red marble?”

• “Suppose that we draw a sequence of marbles

whose colours are (in order):

blue, green, blue, blue, green, red.

What conclusions can you reach about the

probability of drawing a red marble on a future

trial?”

� Two problems of predictive inference

• Prior prediction, before observing any item

• Posterior prediction, after observing n items

� Inference from a state of prior ignorance

about the proportions of the various colours
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Notation

� Event, elementary or combined

Let Bj be the event that the next observation

is of type cj, where cj is a subset of C with J

elements

1 ≤ J ≤ K

If J = 1, then cj = ck is an elementary category

If J > 1, then cj is a combined category

� Define

The observed count and frequency of cj

aj =
∑

k∈j

ak fj =
∑

k∈j

fk

The prior strength, and relative strength, of cj

from a Diri(α) prior

αj =
∑

k∈j

αk tj =
∑

k∈j

tk
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Rule of succession under a PDMM

� Bayesian rule of succession

The rule of succession obtained from a PDMM,

with hyper-parameters α = st, is

P(Bj|a) =
aj + αj

n + s

=
nfj + stj

n + s

The prior prediction, obtained for n = aj = 0, is

P(Bj) = tj

� Generally

Denoting f ′
j =

∑

k∈j f ′
k, the future frequencies in

n′ data, and possibly θj =
∑

k∈j θk, the population

frequencies, then

P(Bj) = E(f ′
j) = E(θj)

P(Bj|a) = E(f ′
j|a) = E(θj|a)

85



Prior rule of succession
under the IDMM

� Prior rule of succession

The L&U prior probabilities of Bj are vacuous:

P(Bj) = 0 and P(Bj) = 1,

obtained as tj → 0 and tj → 1 respectively

� Prior ignorance

Prior imprecision is maximal, L&U probabilities

are vacuous:

∆(Bj) = P(Bj) − P(Bj) = 1

irrespectively of s
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Posterior rule of succession
under the IDMM

� Posterior rule of succession

After data a have been observed, the posterior

L&U probabilities of event Bj are

P(Bj|a) =
aj

n + s
and P(Bj|a) =

aj + s

n + s
,

obtained as tj → 0 and tj → 1 respectively

� Posterior imprecision

∆(Bj|a) = P(Bj|a) − P(Bj|a) =
s

n + s

� L&U probabilities and fj

The interval always contains fj = aj/n. The L&U

probabilities both converge to fj as n increases.

� Rule independent from C, K and J
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Rule of succession and imprecision

� Degree of imprecision about Bj

• Prior state: imprecision is maximal

∆(Bj) = 1

• Posterior state:

∆(Bj|a) =
s

n + s

� Interpretation of s

Hyper-parameter s controls how fast imprecision

diminishes with n: s is the number of observations

necessary to halve imprecision about Bj.
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Objective Bayesian models

� Bayesian rule of succession

The rule of succession obtained from a single

symmetric DiMn distribution, DiMn(n′;α) with

n′ = 1 and αk = s/K, is

P(Bj|a) =
aj + αj

n + s
=

nfj + s J
K

n + s

� Objective Bayesian rules: P(Bj|a) =

Haldane aj/n

Perks (aj + J/K)/(n + 1)

Jeffreys (aj + J/2)/(n + K/2)

Bayes (aj + J)/(n + K)

� Dependence on K and J except Haldane

� Particular case J = 1, K = 2

If aj = n/2, i.e. fj = 1/2, each Bayesian rule leads

to P(Bj|a) = 1/2, whether n = 0, or n = 10, 100

or 1000.
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Categorization arbitrariness

� Arbitrariness of C, i.e. of J and K

Red Others

J = K − 1 1

Red Others

J = 1 K − 1

Most extremes cases obtained as K → ∞

� Bayesian rules

Yield intervals when arbitrariness is introduced

Bayes-Laplace [0; 1], IDM(s → ∞)

Jeffreys [0; 1], IDM(s → ∞)

Perks [
aj

n+1;
aj+1
n+1 ], IDM(s = 1)

Haldane [
aj
n ;

aj
n ], IDM(s → 0)
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Frequentist rule of succession

� “Bayesian and confidence limits for predic-

tion” (Thatcher, 1964)

• Studies the particular case of immediate pre-

diction

� Main result (reminder)

• Upper confidence and credibility limits for a′1
coincide iff the prior is Beta(α1 = 1, α2 = 0).

• Lower confidence and credibility limits for a′1
coincide iff the prior is Beta(α1 = 0, α2 = 1).

� Frequentist “rule of succession”

When reinterpreted as Bayesian rules of succes-

sion, the lower and upper confidence limits re-

spectively correspond to:

P(Bj|a) =
aj

n + 1
and P(Bj|a) =

aj + 1

n + 1

i.e. to the IDM interval for s = 1.
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CONCLUSIONS
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Comments on predictive inference

� Predictive approach is more fundamental

(see, Geisser, 1993)

• Finite population & data

• Models observables only, not hypothetical pa-

rameters

• Relies on the exchangeability assumption only.

• Pearson (1920) considered predictive infer-

ence as “the fundamental problem of practical

statistics”

� Predictive approach is more natural,

� For the IDMM, in particular

• Gives the IDM as a limiting case as n′ → ∞

• Covers sampling with replacement from a fi-

nite population
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Why using a set of Dirichlet’s
Walley (1996, p. 7)

� About Dirichlet’s

(a) Dirichlet prior distributions are mathemati-

cally tractable because . . . they generate Dirich-
let posterior distributions;

(b) when categories are combined, Dirichlet dis-

tributions transform to other Dirichlet distri-
butions (this is the crucial property which en-

sures that the RIP is satisfied);

(c) sets of Dirichlet distributions are very rich,
because they produce the same inferences as

their convex hull and any prior distribution can

be approximated by a finite mixture of Dirich-
let distributions;

(d) the most common Bayesian models for prior

ignorance about θ are Dirichlet distributions.

� Same arguments hold for DiMn distributions
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Links between IDM and IDMM

� Parametric and predictive inference

In general, in both precise Bayesian models and

in the ID(M)M,

• θ, θ|a yield f , f ′|a (from Bayes’ theorem)

• f , f ′|a yield θ, θ|a (as n′ → ∞)

� Equivalence between IDM and IDMM

• The IDM and the IDMM are equivalent, if we

assume that n′ can tend to infinity

• Any IDMM statement about f ′ which is inde-

pendent of n′ is also a valid IDM statement

about θ

� Two views of the IDMM

• The IDMM is the predictive side of the IDM

• The IDMM is a model of its own

95



Fundamental properties of the
ID(M)M

� Principles

Satisfies several desirable principles for prior igno-

rance: SP, EP, RIP, LP, SRP, coherence.

� ID(M)M vs. Bayesian and frequentist

• Answers several difficulties of alternative ap-

proaches

• Provides means to reconcile frequentist and

objective Bayesian approaches (Walley, 2002)

� Generality

More general than for multinomial data. Valid

under a general hypothesis of exchangeability be-

tween observed and future data. (Walley, Bernard,

1999).

� Degree of imprecision and n
Degree of imprecision in posterior inferences en-

ables one to distinguish between: (a) prior un-

certainty still dominates, (b) there is substantial

information in the data.

The two cases can occur within the same data

set.
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