Predictive inference:

From Bayesian inference to Imprecise Probability

Jean-Marc Bernard
University Paris Descartes
CNRS UMR 8069

Third SIPTA School on
Imprecise Probabilities

Montpellier, France
7 July 2008

INTRODUCTION

The "Bag of marbles" example

\square "Bag of marbles" problems (Walley, 1996)

- "I have ... a closed bag of coloured marbles. I intend to shake the bag, to reach into it and to draw out one marble. What is the probability that I will draw a red marble?"
- "Suppose that we draw a sequence of marbles whose colours are (in order):
blue, green, blue, blue, green, red.

What conclusions can you reach about the probability of drawing a red marble on a future trial?"

\square Two problems of predictive inference

- Prior prediction, before observing any item
- Posterior prediction, after observing n items
\square Inference from a state of prior ignorance about the proportions of the various colours

Categorical data (1)

\square Categories

- Set of K of categories or types

$$
C=\left\{c_{1}, \ldots, c_{K}\right\}
$$

- Categories c_{k} are exclusive and exhaustive
- Possible to add an extra category: "other colours", "other types"
\square Categorisation is partly arbitrary

Categorical data (2)

\square Data

- Set, or sequence, I of n observations, items, individuals, etc.
- For each individual $i \in I$, we observe the corresponding category

$$
\begin{aligned}
I & \rightarrow C=\left\{c_{1}, \ldots, c_{K}\right\} \\
i & \mapsto c_{k}
\end{aligned}
$$

- Observed composition, in counts:

$$
\boldsymbol{a}=\left(a_{1}, \ldots, a_{K}\right)
$$

with $\sum_{k} a_{k}=n$

- Observed composition, in frequencies:

$$
\boldsymbol{f}=\left(f_{1}, \ldots, f_{K}\right)=\frac{a}{n}
$$

with $\sum_{k} f_{k}=1$
\square Compositions: order considered as not important

Statistical inference problems (1)

\square Inference about what?

- Predictive inference: About future counts or frequencies in n^{\prime} future observations

$$
\begin{aligned}
a^{\prime} & =\left(a_{1}^{\prime}, \ldots, a_{K}^{\prime}\right) \\
f^{\prime} & =\left(f_{1}^{\prime}, \ldots, f_{K}^{\prime}\right)=a^{\prime} / n^{\prime}
\end{aligned}
$$

$$
\begin{array}{ll}
n^{\prime} \geq 1 & \text { Predictive inference (general) } \\
n^{\prime}=1 & \text { Immediate prediction }
\end{array}
$$

- Parametric inference: About true/parent counts or frequencies (parameters) in population of
\ldots.. size $N<\infty$

$$
\begin{aligned}
\boldsymbol{A} & =\left(A_{1}, \ldots, A_{K}\right) \\
\boldsymbol{\theta} & =\left(\theta_{1}, \ldots, \theta_{K}\right)=\boldsymbol{A} / N
\end{aligned}
$$

\ldots size $N=\infty$

$$
\theta=\left(\theta_{1}, \ldots, \theta_{K}\right) \quad \sum_{k} \theta_{k}=1
$$

Statistical inference problems (2) Prior vs. posterior inferences

\square Prior inferences

- $n=0$ (no data yet)
- Unconditional
- Describes prior uncertainty about f^{\prime} or $\boldsymbol{\theta}$
- Issue: formalize prior ignorance
\square Posterior inferences
- $n \geq 1$ (data \boldsymbol{a} are available)
- Conditional on \boldsymbol{a}
- Describes what can be infered about f^{\prime} or $\boldsymbol{\theta}$ from the prior state + the knowledge of \boldsymbol{a}

Relating past \& future data (1) Random sampling

\square Random sampling

- Population with a fixed, but unknown, true composition in frequencies

$$
\boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{K}\right)
$$

- Data (observed \& future): random samples from the same population
- Ensures that the data are representative of the population w.r.t. C
\square Finite/infinite population
- Multiple-hypergeometric (N finite)
- Multinomial $(N=\infty)$

\square Stopping rule

- Fixed n
- Fixed a_{k}, "negative" sampling
- More complex stopping rules
\square These elements define a sampling model

Relating past \& future data (2) Exchangeabiblity

\square Exchangeability

- Consider any sequence S of $n^{*}=n+n^{\prime}$ observations,

$$
S=\left(c_{1}, \ldots, c_{n}, c_{n+1}, \ldots, c_{n^{*}}\right)
$$

having composition

$$
\boldsymbol{a}^{*}=\left(a_{1}^{*}, \ldots, a_{K}^{*}\right)
$$

- Assumption of order-invariance, or permutationinvariance

$$
\forall S, \quad P\left(S \mid \boldsymbol{a}^{*}\right)=\mathrm{constant}
$$

\square Equivalence with MHyp sampling

Induced $P\left(\boldsymbol{a} \mid \boldsymbol{a}^{*}\right)$ is the same as if data with counts \boldsymbol{a} were obtained from random sampling from a population having counts $a^{*}=a+a^{\prime}$
\square Direct link: No need to invoke unknown parameters $\boldsymbol{\theta}$ of a larger population

A statistical challenge

\square Model prior ignorance

- Model prior ignorance about $\boldsymbol{\theta}$, or \boldsymbol{a} and \boldsymbol{a}^{*}
- Arbitrariness of C and K, both may vary as data items are observed
- Model prior ignorance about both the set C and the number K of categories
\square Make reasonable posterior inferences from such a state of prior ignorance
- Idea of "objective" methods: "let the data speak for themselves"
- Frequentist methods
- Objective Bayesian methods
\square "Reasonable": Several desirable principles

Desirable principles / properties (1)

\square Prior ignorance

- Symmetry (SP): Prior uncertainty should be invariant w.r.t. permutations of categories
- Embedding pcple (EP): Prior uncertainty should not depend on refinements or coarsenings of categories
\square Independence from irrelevant information of posterior inferences
- Stopping rule pcple (SRP): Inferences should not depend on the stopping rule, i.e. on data that might have occurred but have actually not
- Likelihood pcple (LP): Inferences should depend on the data through the likelihood function only
- Representation invariance (RIP): Posterior inferences should not depend on refinements or coarsenings of categories

Desirable principles / properties (2)

\square Reasonable account of uncertainty in prior and posterior inferences
\square Consistency requirements when considering several inferences

- Avoiding sure loss (ASL): Probabilistic assessments, when interpreted as betting dispositions, should not jointly lead to a sure loss
- Coherence (CP): Stronger property of consistency of all probabilistic assessments
\square Frequentist interpretation(s)
- Repeated sampling pcple (RSP): Probabilities should have an interpretation as relative frequencies in the long run
\square See Walley, 1996; 2002

Methods for statistical inference: Frequentist approach

\square Frequentists methods

- Based upon sampling model only e.g. a| $\boldsymbol{\theta}$
- Probabilities can be assimilated to long-run frequencies
- Significance tests, confidence limits and intervals (Fisher, Neyman \& Pearson)
\square Difficulties of frequentist methods
- Depend on the stopping rule. Hence do not obey SRP, nor LP
- Not conditional on observed data; May have relevant subsets
- For multidimensional parameters' space: adhoc and/or asymptotic solutions to the problem of nuisance parameters

Methods for statistical inference: Objective Bayesian approach (1)

\square Bayesian methods

- Two ingredients: sampling model + prior
- Conjugate priors: Dirichlet for multinomial data, Dirichlet-multinomial for multiple-hypergeometric data
- Depend on the sampling model through the likelihood function only
\square Objective Bayesian methods
- Data analysis goal: let the data say what they have to say about unknown parameters
- Priors formalizing "prior ignorance"
- objective Bayesian: "non-informative" priors, etc. (e.g. Kass, Wasserman, 1996)
- Exact or approximate frequentist reinterpretations: "matching priors" (e.g. Datta, Ghosh, 1995)

Methods for statistical inference: Objective Bayesian approach (2)

\square Difficulties of Bayesian methods for categorical data

Several priors proposed for prior ignorance, but none satisfies all desirable principles.

- Inferences often depend on C and/or K
- Some solutions violate LP (Jeffreys, 1946)
- Some solutions can generate incoherent inferences (Berger, Bernardo, 1992)
- If $K=2$, uncertainty about next observation (case $n^{\prime}=1$) is the same whether $a_{1}=a_{2}=0$ (prior) or $a_{1}=a_{2}=100$ (posterior)

$$
P\left(a^{\prime}=(1,0)\right)=P\left(a^{\prime}=(1,0) \mid a\right)
$$

\square Only approximate agreement between frequentist methods and objective Bayesian methods, for categorical data

The IDM in brief

\square Model for parametric inference for categorical data
Proposed by Walley (1996), generalizes the IBM (Walley, 1991).
Inference from data $\boldsymbol{a}=\left(a_{1}, \ldots, a_{K}\right)$, categorized in K categories C, with unknown chances $\boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{K}\right)$.

\square Imprecise probability model

Prior uncertainty about $\boldsymbol{\theta}$ expressed by a set of Dirichlet's.
Posterior uncertainty about $\boldsymbol{\theta} \mid \boldsymbol{a}$ then described by a set of updated Dirichlet's.
Generalizes Bayesian inference, where prior/ posterior uncertainty is described by a single Dirichlet.
\square Imprecise U\&L probabilities, interpreted as reasonable betting rates for or against an event.
\square Models prior ignorance about θ, K and C
\square Satisfies desirable principles for inferences from prior ignorance, contrarily to alternative frequentist and objective Bayesian approaches.

The IDMM in brief

\square Model for predictive inference for categorical data
Proposed by Walley, Bernard (1999), also partly studied in (Walley, 1996).
Inference about future data $\boldsymbol{a}^{\prime}=\left(a_{1}^{\prime}, \ldots, a_{K}^{\prime}\right)$ from observed data $\boldsymbol{a}=\left(a_{1}, \ldots, a_{K}\right)$, categorized in K categories C.

\square Two alternative, equivalent views

- A predictive model derived from the parametric IDM
- A model of its own, modeling only observables: available data \boldsymbol{a} and future data \boldsymbol{a}^{\prime}
\square Imprecise probability model
Prior uncertainty about \boldsymbol{a} expressed by a set of Dirichlet-multinomial distributions.
Posterior uncertainty about $\boldsymbol{a}^{\prime} \mid \boldsymbol{a}$ then described by a set of updated Dirichlet-multinomial distributions.
\square Models prior ignorance about a, K and C

Outline

1. Introduction
2. Bayesian approach to inference
3. Important distributions
4. Objective Bayesian models
5. From Bayesian to imprecise probability models
6. Definition of the IDM \& the IDMM
7. Predictive inferences from the IDMM
8. The rule of succession
9. Conclusions

References

THE BAYESIAN APPROACH

Bayesian inference

\square Focus on the Bayesian approach since

- Bayesian, precise: a single Dirichlet prior on $\boldsymbol{\theta}$ yields a single Dirichlet posterior on $\boldsymbol{\theta} \mid \boldsymbol{a}$ (PDM)
- IP-model: a prior set of Dirichlet's yields a posterior set of Dirichlet's (IDM)
$\square \ldots$ and for predictive inferences since
- Bayesian, precise: a single Dirichlet-Multinomial (DiMn) prior on a^{*} yields a single DiMn posterior on $\boldsymbol{a}^{\prime} \mid \boldsymbol{a}$ (PDMM)
- IP-model: a prior set of DiMn's yields a posterior set of DiMn's (IDMM)

\square Goal

- Sketch Bayesian approach to inference
- Specifically: objective Bayesian models
- Indicate shortcomings of these models

Three sampling models

\square Multinomial data

- Random sampling
- Infinite population, $N=\infty$
- Data have a multinomial (Mn) likelihood

\square Multiple-hypergeometric data

- Random sampling
- Finite population, $N<\infty$
- Data have a multiple-hypergeometric (MHyp) likelihood
\square Exchangeable data
- Data \boldsymbol{a} generated by an exchangeable process with counts $a^{*}=a+a^{\prime}$
- Data have a MHyp likelihood too

\square Hypotheses

- Set C, and number of categories, K, are considered as known and fixed

Inference from multinomial data

\square Multinomial data

- Elements of population are categorized in K categories from set $C=\left\{c_{1}, \ldots, c_{K}\right\}$.
- Unknown true chances $\theta=\left(\theta_{1}, \ldots, \theta_{K}\right)$, with $\theta_{k} \geq 0$ and $\sum_{k} \theta_{k}=1$, i.e. $\boldsymbol{\theta} \in \Theta=\mathcal{S}(1, K)$.
- Data are a random sample of size n from the population, yielding counts $\boldsymbol{a}=\left(a_{1}, \ldots, a_{K}\right)$, with $\sum_{k} a_{k}=n$.

\square Multinomial sampling distribution

$$
P(\boldsymbol{a} \mid \boldsymbol{\theta})=\binom{n}{\boldsymbol{a}} \theta_{1}^{a_{1}} \ldots \theta_{K}^{a_{K}}
$$

When seen as a function of $\boldsymbol{\theta}$, leads to the likelihood function

$$
L(\boldsymbol{\theta} \mid \boldsymbol{a}) \propto \theta_{1}^{a_{1}} \ldots \theta_{K}^{a_{K}}
$$

\square Same likelihood is obtained from observing \boldsymbol{a}, for a variety of stopping rules: n fixed, a_{k} fixed, etc.

Bayesian inference (1): a learning model

\square General scheme

$\left\{\begin{array}{c}\text { Prior } P(\theta) \\ + \\ \text { Sampling } P(\boldsymbol{a} \mid \boldsymbol{\theta})\end{array} \longrightarrow\left\{\begin{array}{c}\text { Posterior } P(\boldsymbol{\theta} \mid \boldsymbol{a}) \\ + \\ \text { Prior predictive } P(\boldsymbol{a})\end{array}\right.\right.$

\square Iterative process

$\left\{\begin{array}{c}\text { Prior' } P(\boldsymbol{\theta} \mid \boldsymbol{a}) \\ + \\ \text { Sampl. } \\ \hline P\left(\boldsymbol{a}^{\prime} \mid \boldsymbol{\theta}, \boldsymbol{a}\right)\end{array} \longrightarrow\left\{\begin{array}{c}\text { Posterior' } P\left(\boldsymbol{\theta} \mid \boldsymbol{a}^{\prime}, \boldsymbol{a}\right) \\ + \\ \text { Post. pred. } P\left(\boldsymbol{a}^{\prime} \mid \boldsymbol{a}\right)\end{array}\right.\right.$
\square Learning model about

- unknown chances: $P(\boldsymbol{\theta})$ updated to $P(\boldsymbol{\theta} \mid \boldsymbol{a})$
- future data: $P(\boldsymbol{a})$ updated to $P\left(\boldsymbol{a}^{\prime} \mid \boldsymbol{a}\right)$

Bayesian inference (2)

\square Continuous parameters space

Since the parameters space, Θ, is continuous, probabilities on $\boldsymbol{\theta}, P(\boldsymbol{\theta})$ and $P(\boldsymbol{\theta} \mid \boldsymbol{a})$, are defined via densities, denoted $h(\boldsymbol{\theta})$ and $h(\boldsymbol{\theta} \mid \boldsymbol{a})$
\square Bayes' theorem (or rule)

$$
\begin{aligned}
h(\boldsymbol{\theta} \mid \boldsymbol{a}) & =\frac{h(\boldsymbol{\theta}) P(\boldsymbol{a} \mid \boldsymbol{\theta})}{\int_{\Theta} h(\boldsymbol{\theta}) P(\boldsymbol{a} \mid \boldsymbol{\theta}) d \boldsymbol{\theta}} \\
& =\frac{h(\boldsymbol{\theta}) L(\boldsymbol{\theta} \mid \boldsymbol{a})}{\int_{\Theta} h(\boldsymbol{\theta}) L(\boldsymbol{\theta} \mid \boldsymbol{a}) d \boldsymbol{\theta}}
\end{aligned}
$$

\square Likelihood principle satisfied if prior $h(\theta)$ is chosen independently of $P(\boldsymbol{a} \mid \boldsymbol{\theta})$

\square Conjugate inference

- Prior $h(\boldsymbol{\theta})$ and posterior $h(\boldsymbol{\theta} \mid \boldsymbol{a})$ are from the same family
- For multinomial likelihood: Dirichlet family

Dirichlet prior for $\boldsymbol{\theta}$

\square Dirichlet prior
Prior uncertainty about $\boldsymbol{\theta}$ is expressed by

$$
\theta \sim \operatorname{Diri}(\alpha)
$$

with prior strengths

$$
\alpha=\left(\alpha_{1}, \ldots, \alpha_{K}\right)
$$

such that $\alpha_{k}>0, \quad \sum_{k} \alpha_{k}=s$

\square Dirichlet distribution

Density defined for any $\boldsymbol{\theta} \in \Theta$, with $\Theta=\mathcal{S}(1, K)$

$$
h(\boldsymbol{\theta})=\frac{\Gamma(s)}{\Gamma\left(\alpha_{1}\right) \cdots \Gamma\left(\alpha_{K}\right)} \theta_{1}^{\alpha_{1}-1} \cdots \theta_{K}^{\alpha_{K}-1}
$$

\square Generalisation of the Beta distribution
$\left(\theta_{1}, 1-\theta_{1}\right) \sim \operatorname{Diri}\left(\alpha_{1}, \alpha_{2}\right) \Longleftrightarrow \theta_{1} \sim \operatorname{Beta}\left(\alpha_{1}, \alpha_{2}\right)$

Alternative parameterization

\square Dirichlet prior on θ

$$
\theta \sim \operatorname{Diri}(\alpha)
$$

\square Alternative parameterization in terms of s, the total prior strength, and the relative prior strengths

$$
t=\left(t_{1}, \ldots, t_{K}\right)=\alpha / s
$$

with $t_{k}>0, \sum_{k} t_{k}=1$, i.e. $\boldsymbol{t} \in \mathcal{S}^{\star}(1, K)$
Hence,

$$
\theta \sim \operatorname{Diri}(s t)
$$

\square Prior expectation of θ_{k}

$$
E\left(\theta_{k}\right)=t_{k}
$$

\square Interpretation

- \boldsymbol{t} determines the center of the distribution
- s determines its dispersion / concentration

Dirichlet posterior for $\boldsymbol{\theta} \mid \boldsymbol{a}$

\square Dirichlet posterior

Posterior uncertainty about $\boldsymbol{\theta} \mid \boldsymbol{a}$ is expressed by

$$
\begin{aligned}
\boldsymbol{\theta} \mid \boldsymbol{a} & \sim \operatorname{Diri}(\boldsymbol{a}+\boldsymbol{\alpha}) \\
& \sim \operatorname{Diri}(\boldsymbol{a}+s \boldsymbol{t})
\end{aligned}
$$

Parameters/strengths of the Dirichlet play a role of counters: the prior strength α_{k} is incremented by the observed count a_{k} to give the posterior strength $a_{k}+\alpha_{k}$
\square Posterior expectation of θ_{k}

$$
\begin{aligned}
E\left(\theta_{k} \mid \boldsymbol{a}\right) & =\frac{a_{k}+\alpha_{k}}{n+s} \\
& =\frac{n f_{k}+s t_{k}}{n+s}
\end{aligned}
$$

i.e. a weighted average of prior expectation, t_{k}, and observed frequency, f_{k}, with weights s and n

Prior predictive distribution

\square From Bayes theorem

$$
h(\boldsymbol{\theta} \mid \boldsymbol{a})=\frac{h(\boldsymbol{\theta}) P(\boldsymbol{a} \mid \boldsymbol{\theta})}{\int_{\Theta} h(\boldsymbol{\theta}) P(\boldsymbol{a} \mid \boldsymbol{\theta}) d \boldsymbol{\theta}}
$$

\square Prior predictive distribution on a

$$
\begin{aligned}
P(\boldsymbol{a}) & =\int_{\Theta} h(\boldsymbol{\theta}) P(\boldsymbol{a} \mid \boldsymbol{\theta}) d \boldsymbol{\theta} \\
& =\frac{h(\boldsymbol{\theta}) P(\boldsymbol{a} \mid \boldsymbol{\theta})}{h(\boldsymbol{\theta} \mid \boldsymbol{a})}
\end{aligned}
$$

which yields

$$
P(\boldsymbol{a})=\frac{\prod_{k}\binom{a_{k}+\alpha_{k}-1}{a_{k}}}{\binom{n+s-1}{n}}
$$

with $\binom{m+x-1}{m}=\frac{\Gamma(m+x)}{m!\Gamma(x)}$, for any positive integer $m \geq 0$, and any real $x>0$
\square Dirichlet-multinomial distribution

$$
\boldsymbol{a} \sim \operatorname{DiMn}(n ; \boldsymbol{\alpha})
$$

Posterior predictive distribution

\square Similarly, from Bayes theorem

$$
\begin{aligned}
P\left(\boldsymbol{a}^{\prime} \mid \boldsymbol{a}\right) & =\frac{h(\boldsymbol{\theta} \mid \boldsymbol{a}) P\left(\boldsymbol{a}^{\prime} \mid \boldsymbol{\theta}, \boldsymbol{a}\right)}{h\left(\boldsymbol{\theta} \mid \boldsymbol{a}^{\prime}, \boldsymbol{a}\right)} \\
& =\frac{h(\boldsymbol{\theta} \mid \boldsymbol{a}) P\left(\boldsymbol{a}^{\prime} \mid \boldsymbol{\theta}\right)}{h\left(\boldsymbol{\theta} \mid \boldsymbol{a}^{\prime}+\boldsymbol{a}\right)}
\end{aligned}
$$

which yields

$$
P\left(\boldsymbol{a}^{\prime} \mid \boldsymbol{a}\right)=\frac{\prod_{k}\binom{a_{k}^{\prime}+a_{k}+\alpha_{k}-1}{a_{k}^{\prime}}}{\binom{n^{\prime}+n+s-1}{n^{\prime}}}
$$

\square Dirichlet-multinomial posterior

$$
\boldsymbol{a}^{\prime} \mid \boldsymbol{a} \sim \operatorname{DiMn}\left(n^{\prime} ; \boldsymbol{a}+\boldsymbol{\alpha}\right)
$$

\square Interpretation in terms of "counters"

Here too, prior strengths $\boldsymbol{\alpha}$ are updated into posterior strengths $\boldsymbol{a}+\boldsymbol{\alpha}$

Equivalence of 3 models for predictive inference

\square Multinomial + Dirichlet model
$\left\{\begin{array}{l}\theta \sim \text { Diri (Prior) } \\ a \mid \boldsymbol{\theta} \sim \text { Mn (Samp.) } \\ \boldsymbol{a}^{\prime} \mid \boldsymbol{\theta}, \boldsymbol{a} \sim \text { Mn (Samp.) }\end{array} \longrightarrow\left\{\begin{array}{c}a \sim \text { DiMn } \\ + \\ a^{\prime} \mid a \sim \text { DiMn }\end{array}\right.\right.$
\square M.-Hypergeometric + DiMn model
$\left\{\begin{array}{l}\boldsymbol{A} \sim \operatorname{DiMn} \text { (Prior) } \\ \boldsymbol{a} \mid \boldsymbol{A} \sim \text { MHyp (Samp.) } \\ \boldsymbol{a}^{\prime} \mid \boldsymbol{A}, \boldsymbol{a} \sim \text { MHyp (Samp.) }\end{array} \longrightarrow\left\{\begin{array}{c}\boldsymbol{a} \sim \operatorname{DiMn} \\ + \\ \boldsymbol{a}^{\prime} \mid \boldsymbol{a} \sim \text { DiMn }\end{array}\right.\right.$
\square Exchangeability + DiMn model
$\left\{\begin{aligned} a^{*} & \sim \operatorname{DiMn} \text { (Prior) } \\ a \mid a^{*} & \sim \text { MHyp (Samp.) } \\ a^{\prime} \mid a^{*}, a & \sim \text { MHyp (Samp.) }\end{aligned} \longrightarrow\left\{\begin{array}{c}a \sim \operatorname{DiMn} \\ + \\ a^{\prime} \mid a \sim \text { DiMn }\end{array}\right.\right.$

Bayesian answers to inference (1) Parametric problems

\square Prior uncertainty: $P(\theta)$

\square Posterior uncertainty: $P(\theta \mid a)$

For drawing all inferences, from observed data to unknown parameters
\square Inferences about $\boldsymbol{\theta}$

- Expectations, $E\left(\theta_{k} \mid \boldsymbol{a}\right) ;$ Variances, $\operatorname{Var}\left(\theta_{k} \mid \boldsymbol{a}\right)$; etc.
- Any event about $\boldsymbol{\theta}: ~ P\left(\boldsymbol{\theta} \in \Theta^{*} \mid \boldsymbol{a}\right)$
\square Inferences about real-valued $\lambda=g(\boldsymbol{\theta})$
- Marginal distribution function: $h(\lambda \mid a)$
- Expectation, variance: $E(\lambda \mid a), \operatorname{Var}(\lambda \mid \boldsymbol{a})$
- Cdf: $F_{\lambda}(u)=P(\lambda<u \mid a)=\int_{-\infty}^{u} h(\lambda \mid a) d \lambda$
- Credibility intervals: $P\left(\lambda \in\left[u_{1} ; u_{2}\right] \mid a\right)$
- Any event about λ

Bayesian answers to inference (2) Predictive problems

\square Prior uncertainty: $P(\boldsymbol{a})$ or $P(\boldsymbol{f})$
\square Posterior uncertainty: $P\left(\boldsymbol{a}^{\prime} \mid \boldsymbol{a}\right)$ or $P\left(f^{\prime} \mid \boldsymbol{a}\right)$
For drawing all inferences, from observed data to future data
\square Inferences about f^{\prime}

- Expectations, $E\left(f_{k}^{\prime} \mid \boldsymbol{a}\right)$; Variances, $\operatorname{Var}\left(f_{k}^{\prime} \mid \boldsymbol{a}\right)$; etc.
- Any event about $f^{\prime}: P\left(f^{\prime} \in \Theta^{*} \mid a\right)$
\square Inferences about real-valued $\lambda=g\left(f^{\prime}\right)$
- Marginal distribution function: $P(\lambda \mid a)$
- Expectation, variance: $E(\lambda \mid \boldsymbol{a}), \operatorname{Var}(\lambda \mid \boldsymbol{a})$
- Cdf: $F_{\lambda}(u)=P(\lambda<u \mid a)=\sum_{\lambda<u} P(\lambda \mid a)$
- Credibility intervals: $P\left(\lambda \in\left[u_{1} ; u_{2}\right] \mid a\right)$
- Any event about λ

IMPORTANT DISTRIBUTIONS

Relevant distributions

\square Parametric inference on infinite population

- Dirichlet (Diri), any K
- Beta (Beta), $K=2$
\square Predictive inference on future n^{\prime} data
- Dirichlet-Multinomial (DiMn), any K
- Beta-Binomial (BeBi), $K=2$
\square Links

	n^{\prime}	$n^{\prime} \rightarrow \infty$
$K=2$	BeBi	Beta
K	DiMn	Diri

Beta distribution

\square Consider the variable

$$
\theta \in[0,1]
$$

and the hyper-parameters

$$
\alpha_{1}>0, \alpha_{2}>0
$$

or $s=\alpha_{1}+\alpha_{2}, t_{1}=\alpha_{1} / s, t_{2}=\alpha_{2} / s$,
with $s>0, t_{1}>0, t_{2}>0, t_{1}+t_{2}=1$
\square Beta density

$$
\begin{aligned}
\theta & \sim \operatorname{Beta}\left(\alpha_{1}, \alpha_{2}\right)=\operatorname{Beta}\left(s t_{1}, s t_{2}\right) \\
h(\theta) & =\frac{\Gamma(s)}{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right)} \theta^{\alpha_{1}-1}(1-\theta)^{\alpha_{2}-1} \\
& \propto \theta_{1}^{\alpha_{1}-1}(1-\theta)^{\alpha_{2}-1}
\end{aligned}
$$

\square Expectation and variance

$$
\begin{aligned}
E(\theta) & =\alpha_{1} / s=t_{1} \\
\operatorname{Var}(\theta) & =\frac{\alpha_{1} \alpha_{2}}{s^{2}(s+1)}=\frac{t_{1} t_{2}}{s+1}
\end{aligned}
$$

Dirichlet distribution

\square Consider

$$
\begin{aligned}
& \boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{K}\right) \\
& t=\left(t_{1}, \ldots, t_{K}\right) \quad t \in \mathcal{T}=\mathcal{S}(1, K) \\
& \mathcal{S}^{\star}(1, K)
\end{aligned}
$$

and $s>0$, or $\alpha=s t, \alpha_{k}>0$
\square Dirichlet density

$$
\begin{aligned}
\boldsymbol{\theta} & \sim \operatorname{Diri}(\boldsymbol{\alpha})=\operatorname{Diri}(s t) \\
h(\boldsymbol{\theta}) & =\frac{\Gamma(s)}{\prod_{k} \Gamma\left(\alpha_{k}\right)} \theta_{1}^{\alpha_{1}-1} \ldots \theta_{K}^{\alpha_{K}-1} \\
& \propto \theta_{1}^{\alpha_{1}-1} \ldots \theta_{K}^{\alpha_{K}-1}
\end{aligned}
$$

\square Generalization of Beta distribution ($K=2$)
$\left(\theta_{1}, \theta_{2}\right) \sim \operatorname{Diri}\left(\alpha_{1}, \alpha_{2}\right) \Longleftrightarrow \theta_{1} \sim \operatorname{Beta}\left(\alpha_{1}, \alpha_{2}\right)$
\square Basic properties

- $E\left(\theta_{k}\right)=t_{k}$
- s determines dispersion of distribution

Examples of Dirichlet's

\square Example 1

$\operatorname{Diri}(1,1, \ldots, 1)$ is uniform on $\mathcal{S}(1, K)$

\square Example 2

$$
\left(\theta_{1}, \theta_{2}, \theta_{3}\right) \sim \operatorname{Diri}(10,8,6)
$$

(Highest density contours: $[100 \%, 90 \%, \ldots, 10 \%]$)

Properties of the Dirichlet

General properties given on an example. Assume $\left(\theta_{1}, \ldots, \theta_{5}\right) \sim \operatorname{Diri}\left(\alpha_{1}, \ldots, \alpha_{5}\right)$. Then,

\square Pooling property

$$
\left(\theta_{1}, \theta_{234}, \theta_{5}\right) \sim \operatorname{Diri}\left(\alpha_{1}, \alpha_{234}, \alpha_{5}\right)
$$

where pooling categories amounts to add corresponding chances, $\theta_{234}=\theta_{2}+\theta_{3}+\theta_{4}$, and strengths, $\alpha_{234}=\alpha_{2}+\alpha_{3}+\alpha_{4}$.

\square Restriction property

$$
\left(\theta_{2}^{234}, \theta_{3}^{234}, \theta_{4}^{234}\right) \sim \operatorname{Diri}\left(\alpha_{2}, \alpha_{3}, \alpha_{4}\right)
$$

where $\theta_{2}^{234}=\theta_{2} / \theta_{234}$, etc., are conditional chances.
\square Generalizes to any tree underlying the set C.

Tree representation of categories

Beta-Binomial distribution (1)

\square Notation

$$
\left(a_{1}, a_{2}\right) \sim \operatorname{BeBi}\left(n ; \alpha_{1}, \alpha_{2}\right)
$$

for a_{1} and a_{2} positive integers, with $a_{1}+a_{2}=n$ and $\alpha_{1}>0$ and $\alpha_{2}>0$, with $\alpha_{1}+\alpha_{2}=s$
\square Probability distribution function

$$
\begin{aligned}
P\left(a_{1}, a_{2}\right) & =\frac{\binom{a_{1}+\alpha_{1}-1}{a_{1}}\binom{a_{2}+\alpha_{2}-1}{a_{2}}}{\binom{n+s-1}{n}} \\
& =\frac{\Gamma\left(a_{1}+\alpha_{1}\right)}{a_{1}!\Gamma\left(\alpha_{1}\right)} \frac{\Gamma\left(a_{2}+\alpha_{2}\right)}{a_{2}!\Gamma\left(\alpha_{2}\right)} \frac{n!\Gamma(s)}{\Gamma(n+s)} \\
& =\binom{n}{a_{1}} \frac{\alpha_{1}{ }^{\left[a_{1}\right]} \alpha_{2}{ }^{\left[a_{2}\right]}}{s^{[n]}}
\end{aligned}
$$

Beta-Binomial distribution (2)

\square Expectation \& variance of a_{1} and $f_{1}=a_{1} / n$

$$
\begin{aligned}
E\left(a_{1}\right) & =n \frac{\alpha_{1}}{s}=n t_{1} \\
E\left(f_{1}\right) & =t_{1} \\
\operatorname{Var}\left(f_{1}\right) & =\frac{t_{1}\left(1-t_{1}\right)}{s+1} \times \frac{n+s}{n}
\end{aligned}
$$

where $t_{1}=\alpha_{1} / s, 1-t_{1}=t_{2}=\alpha_{2} / s$
\square Convergence of distribution of f_{1}

$$
t_{1} \rightarrow \operatorname{Beta}\left(\alpha_{1}, \alpha_{2}\right)
$$

when $n \rightarrow \infty$

Dirichlet-Multinomial distribution

\square Notation

$$
\boldsymbol{a} \sim \operatorname{DiMn}(n ; \boldsymbol{\alpha})
$$

for $\boldsymbol{a}=\left(a_{1}, \ldots, a_{K}\right), a_{k}$ positive ints, $\sum_{k} a_{k}=n$ and $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{K}\right), \alpha_{k}>0, \sum_{k} \alpha_{k}=s$

\square Probability distribution function

$$
\begin{aligned}
P(\boldsymbol{a}) & =\frac{\prod_{k}\binom{a_{k}+\alpha_{k}-1}{a_{k}}}{\binom{n+s-1}{n}} \\
& =\frac{n!\Gamma(s)}{\Gamma(n+s)} \prod_{k} \frac{\Gamma\left(a_{k}+\alpha_{k}\right)}{a_{k}!\Gamma\left(\alpha_{k}\right)} \\
& =\binom{n}{\boldsymbol{a}} \frac{\prod_{k} \alpha_{k}\left[a_{k}\right]}{s^{[n]}}
\end{aligned}
$$

Mathematical functions or coefficients

\square Binomial coefficient

$$
\binom{n}{a}=\frac{n!}{a!(n-a)!}
$$

for n, a integers, $n \geq a$
\square Multinomial coefficients

$$
\binom{n}{\boldsymbol{a}}=\frac{n!}{a_{1}!\cdots a_{k}!}
$$

for $\boldsymbol{a}=\left(a_{1}, \ldots, a_{K}\right)$ integers, $\sum_{k} a_{k}=n$
\square Generalized binomial coefficients

$$
\binom{m+x-1}{m}=\frac{\Gamma(m+x)}{m!\Gamma(x)}
$$

for integer $m \geq 0$, and real $x>0$
\square Ascending factorial (from Appell ?)

$$
x^{[m]}=x(x+1) \cdots(x+m-1), \quad x^{[0]}=1
$$

for integer $m \geq 0$, and real x

OBJECTIVE BAYESIAN MODELS

Objective Bayesian models

\square Priors proposed for objective inference

Idea: $\boldsymbol{\alpha}$ expressing prior ignorance about $\boldsymbol{\theta}$ or \boldsymbol{a}^{*} (Kass \& Wasserman, 1996; Bernard, 1996)
\square For direct (Mn or MHyp) sampling

Almost all proposed solutions for fixed n are symmetric Dirichlet priors, i.e. $t_{k}=1 / K$:

- Haldane (1948): $\alpha_{k}=0(s=0)$
- Perks (1947): $\alpha_{k}=\frac{1}{K}(s=1)$
- Jeffreys (1946): $\alpha_{k}=\frac{1}{2}(s=K / 2)$
- Bayes-Laplace, uniform: $\alpha_{k}=1(s=K)$
- Berger-Bernardo reference priors
\square For negative (Mn or MHyp) sampling
Some proposed solutions for fixed a_{k} are nonsymmetric Dirichlet priors

Which principles are satisfied? (1)

\square Prior ignorance

- Symmetry (SP). Yes: for all usual symmetric priors with $t_{k}=1 / K$. No: for some priors proposed for negative-sampling.
- Embedding Pcple (EP). Yes: for Haldane's prior. No: for all other priors
\square Internal consistency
- Coherence (CP), including ASL. Yes: if prior is proper. No: for Haldane's improper prior.
\square Frequentist interpretation
- Repeated sampling pcple (RSP). No in general. Yes asymptotically. Exact or conservative agreement for some procedures.

Which principles are satisfied? (2)

\square Invariance, Independence from irrelevant information

- Likelihood pcple (LP), including SRP. Yes, if prior $\left(P(\boldsymbol{\theta})\right.$ or $P\left(\boldsymbol{a}^{*}\right)$) chosen independently of sampling model $\left(P(\boldsymbol{a} \mid \boldsymbol{\theta})\right.$ or $\left.P\left(\boldsymbol{a} \mid \boldsymbol{a}^{*}\right)\right)$. No, for Jeffreys' or Berger-Bernardo's priors
- Representation invariance (RIP). Yes: Haldane. No: all other priors
- Invariance by reparameterisation. Yes, for Jeffreys' or Berger-Bernardo's priors
\square Difficulties of objective Bayesian approach

None of these solutions simultaneously satisfies all desirable principles for inferences from prior ignorance

Focus on Haldane's prior

\square Satisfies most principles

- Satisfies most of the principles: symmetry, LP, EP and RIP
- Incoherent because of improperness, but can be extended to a coherent model (Walley, 1991)

\square But

- Improper prior
- Improper posterior if some $a_{k}=0$
- Too data-glued:

If $a_{k}=n=1$, essentially says that $\theta_{k}=1$, or that $a_{k}^{\prime}=n^{\prime}$, with probability 1 .
If $a_{k}=0$, essentially says that $\theta_{k}=0$, or that $a_{k}^{\prime}=0$ for any n^{\prime}, with probability 1 .

- Doesn't give a reasonable account of uncertainty.
\square Limit case of the ID(M)M

FROM PRECISE BAYESIAN MODELS TO AN IMPRECISE PROBABILITY MODEL

Precise Bayesian Dirichlet model

\square Elements of a (precise) standard Bayesian model

- Prior distribution: $P(\theta), \theta \in \Theta$
- Sampling distribution: $P(a \mid \theta), a \in \mathcal{A}, \theta \in \Theta$
- Posterior distribution: $P(\theta \mid a), \theta \in \Theta, a \in \mathcal{A}$, obtained by Bayes' theorem
\square Elements of a precise Dirichlet model
- Dirichlet $P(\theta)$
- Multinomial $P(a \mid \theta)$
- Dirichlet $P(\theta \mid a)$

Probability vs. Prevision (1)

\square Three distributions

$$
P(\boldsymbol{\theta}) \quad P(\boldsymbol{a} \mid \boldsymbol{\theta}) \quad P(\boldsymbol{\theta} \mid \boldsymbol{a})
$$

These are probability distributions, which allocate a mass probability (or a probability density) to any event relative to $\boldsymbol{\theta}$ and/or \boldsymbol{a}.
\square From probability of events to previsions of gambles

Since each one is a precise model, each defines a unique linear prevision for each possible gamble. So, each $P(\cdot)$ or $P(\cdot \mid \cdot)$ can be assimilated to a linear prevision

\square Domains of these linear previsions

Here, we always consider all possible gambles, so these linear previsions are each defined on the linear space of all gambles (on their respective domains).

Probability vs. Prevision (2)

 Remarks\square Remark on terms used

- Random quantity $=$ Gamble
- Expectation $=$ Prevision
\square Previsions of gambles are more fundamental than probabilities of events
- Precise world:

$$
\text { Previsions } \Longleftrightarrow \text { Probabilities }
$$

- Imprecise world:

Previsions \Longrightarrow Probabilities
\square See (de Finetti, 1974-75; Walley, 1991)

Coherence of a standard Bayesian model

\square Coherence of these linear previsions

- If prior is proper, then $P(\boldsymbol{\theta})$ is coherent
- $P(\boldsymbol{a} \mid \boldsymbol{\theta})$ always coherent
- If prior is proper, then posterior is proper, and hence $P(\boldsymbol{\theta} \mid \boldsymbol{a})$ is coherent
\square Joint coherence (Walley, 1991, Thm. 7.7.2)
- The linear previsions, $P(\boldsymbol{\theta}), P(\boldsymbol{a} \mid \boldsymbol{\theta})$ and $P(\boldsymbol{\theta} \mid \boldsymbol{a})$ are jointly coherent
- This is assured by generalized Bayes' rule, which reduces to Bayes' rule/theorem in the case of linear previsions.

Class of coherent models

\square One privileged way of constructing coherent imprecise posterior probabilities
"... is to form the lower envelopes of a class of standard Bayesian priors and the corresponding class of standard Bayesian posteriors" (Walley, 1991, p. 397)
\square Lower envelope theorem (id., Thm. 7.1.6)

The lower envelope of a class of separately coherent lower previsions, is a coherent lower prevision.
\square Class of Bayesian models (id., Thm. 7.8.1):

Suppose that $P_{\gamma}(\cdot), P_{\gamma}(\cdot \mid \Theta)$ and $P_{\gamma}(\cdot \mid \mathcal{A})$ constitute a standard Bayesian model, for every $\gamma \in$ Г. Then their lower envelopes, $\underline{P}(\cdot), \underline{P}(\cdot \mid \Theta)$ and $\underline{P}(\cdot \mid \mathcal{A})$ are coherent.

Towards the IDM \& the IDMM

\square Building an Imprecise Dirichlet model

- Class of Dirichlet priors
- A single precise $M n$ sampling model
- Update each prior, using Bayes' theorem
- Class of Dirichlet posteriors
- Form the associated posterior lower prevision
$\square \ldots$ or an Imprecise Dirichlet-multinomial model
- Class of Dirichlet-multinomial priors
- A single precise MHyp sampling model
- Update each prior, using Bayes' theorem
- Class of Dirichlet-multinomial posteriors
- Form the associated posterior lower prevision

The IDM \& IDMM

Class of priors for the IDM \& the IDMM

\square Models proposed by Walley (1996) for the IDM, and by Walley, Bernard (1999) for the IDMM.

\square Which prior class?

Chosing a Diri or a DiMn prior amounts to chosing prior strengths

$$
\begin{aligned}
\boldsymbol{\alpha} & =\left(\alpha_{1}, \ldots, \alpha_{K}\right) \\
& =s \boldsymbol{t} \\
& =s\left(t_{1}, \ldots, t_{K}\right)
\end{aligned}
$$

In the IDM or the IDMM

- Fix the total prior strength s
- Let t take all possible values in $\mathcal{T}=\mathcal{S}^{\star}(1, K)$
\square Yielding which properties?
- Nice properties for modeling prior ignorance
- Satisfy several desirable principles

Prior and posterior IDM

\square Prior IDM

The prior $\operatorname{IDM}(s)$ is defined as the set \mathcal{M}_{0} of all Dirichlet distributions on $\boldsymbol{\theta}$ with a fixed total prior strength $s>0$:

$$
\mathcal{M}_{0}=\left\{\operatorname{Diri}(s t): t \in \mathcal{T}=\mathcal{S}^{\star}(1, K)\right\}
$$

\square Posterior IDM

Posterior uncertainty about $\boldsymbol{\theta}$, conditional on \boldsymbol{a}, is expressed by the set

$$
\mathcal{M}_{n}=\left\{\operatorname{Diri}(\boldsymbol{a}+s \boldsymbol{t}): \boldsymbol{t} \in \mathcal{T}=\mathcal{S}^{\star}(1, K)\right\}
$$

\square Updating

Each Dirichlet distribution on $\boldsymbol{\theta}$ in the set \mathcal{M}_{0} is updated into another Dirichlet on $\boldsymbol{\theta} \mid \boldsymbol{a}$ in the set \mathcal{M}_{n}, using Bayes' theorem.

This procedure guarantees the coherence of inferences (Walley, 1991, Thm. 7.8.1).

Prior and posterior IDMM

\square Prior IDMM

The prior $\operatorname{IDMM}(s)$ is defined as the set \mathcal{M}_{0} of all Dirichlet-Multinomial distributions on \boldsymbol{a}^{*} with a fixed total prior strength $s>0$:

$$
\mathcal{M}_{0}=\left\{\operatorname{DiMn}\left(n^{*} ; s t\right): t \in \mathcal{T}=\mathcal{S}^{\star}(1, K)\right\}
$$

\square Posterior IDMM

Posterior uncertainty about \boldsymbol{a}^{\prime}, conditional on \boldsymbol{a}, is expressed by the set

$$
\mathcal{M}_{n}=\left\{\operatorname{DiMn}\left(n^{\prime} ; \boldsymbol{a}+s \boldsymbol{t}\right): \boldsymbol{t} \in \mathcal{T}=\mathcal{S}^{\star}(1, K)\right\} .
$$

\square Updating

Similarly, each DiMn distribution on a^{*} in the set \mathcal{M}_{0} is updated into another DiMn on $\boldsymbol{a}^{\prime} \mid \boldsymbol{a}$ in the set \mathcal{M}_{n}.

\square Counts / frequencies

Prior on \boldsymbol{a}^{*} or \boldsymbol{f}^{*}, posterior on $\boldsymbol{a}^{\prime} \mid \boldsymbol{a}$ or $\boldsymbol{f}^{\prime} \mid \boldsymbol{a}$.

Drawing inferences from the IDM or IDMM

\square Events, indicator functions

- Compute lower \& upper (L\&U) probabilities of events of interest
- Substantial conclusion if lower probability is sufficiently large

\square Random quantities

- Compute L\&U cumulative distribution functions (cdf)
- Compute L\&U expectations
- Compute L\&U variances
- Compute L\&U credible limits
- Compute (conservative) credible interval having a fixed (e.g. 0.95) lower probability
\square Optimization problems:
minimizing and maximizing

L\&U probabilities of an event

\square Prior L\&U probabilities

Consider an event B relative to f^{\prime}, and $P_{s t}(B)$ the prior probability obtained from the distribution $\operatorname{DiMn}\left(n^{\prime} ; s t\right)$ in \mathcal{M}_{0}.

Prior uncertainty about B is expressed by

$$
\underline{P}(B) \text { and } \bar{P}(B) \text {, }
$$

obtained by min-/maximization of $P_{s t}(B)$ w.r.t. $\boldsymbol{t} \in \mathcal{S}^{\star}(1, K)$.

\square Posterior L\&U probabilities

Denote $P_{s t}(B \mid \boldsymbol{a})$ the posterior probability of B obtained from the prior $\operatorname{DiMn}\left(n^{\prime} ; s t\right)$ in \mathcal{M}_{0}, i.e. the posterior $\operatorname{DiMn}\left(n^{\prime} ; \boldsymbol{a}+s t\right)$ in \mathcal{M}_{n}.

Posterior uncertainty about B is expressed by

$$
\underline{P}(B \mid \boldsymbol{a}) \text { and } \bar{P}(B \mid \boldsymbol{a}),
$$

obtained by min-/maximization of $P_{s t}(B \mid \boldsymbol{a})$ w.r.t. $\boldsymbol{t} \in \mathcal{S}^{\star}(1, K)$.

Posterior inferences about $\lambda=g\left(\boldsymbol{f}^{\prime}\right)$

\square Derived parameter of interest (real-valued)

$$
\lambda=g\left(f^{\prime}\right)=\left\{\begin{array}{l}
f_{k}^{\prime} \\
\sum_{k} y_{k} f_{k}^{\prime} \\
f_{i}^{\prime} / f_{j}^{\prime} \\
\text { etc. }
\end{array}\right.
$$

Inferences about λ can be summarized by

\square L\&U expectations

$$
\underline{E}(\lambda \mid \boldsymbol{a}) \quad \text { and } \quad \bar{E}(\lambda \mid \boldsymbol{a}),
$$

obtained by min-/maximization of $E_{s t}(\lambda \mid \boldsymbol{a})$ w.r.t. $\boldsymbol{t} \in \mathcal{S}^{\star}(1, K)$,

\square L\&U cumulative distribution fonctions (cdf)

$$
\begin{aligned}
& \underline{F}_{\lambda}(u \mid \boldsymbol{a})=\underline{P}(\lambda \leq u \mid \boldsymbol{a}) \\
& \bar{F}_{\lambda}(u \mid \boldsymbol{a})=\bar{P}(\lambda \leq u \mid \boldsymbol{a})
\end{aligned}
$$

obtained by min-/maximization of $P_{s t}(\lambda \leq u \mid a)$ w.r.t. $\boldsymbol{t} \in \mathcal{S}^{\star}(1, K)$,

Example of L\&U cdf's

\square Example from Walley, Bernard (1999)
Data $\boldsymbol{a}=(2,12,46,6,0)$ with $n=66$ and $K=5$. Prediction for $n^{\prime}=384$ (i.e. $n^{*}=450$), on

$$
\begin{aligned}
\lambda=g\left(f^{*}\right) & =2 f_{1}^{*}+f_{2}^{*}-f_{4}^{*}-2 f_{5}^{*} \\
& =\frac{384}{450} g\left(f^{\prime}\right)+\frac{66}{450} g(f)
\end{aligned}
$$

\square L\&U cdf's of λ

Optimization problems

\square Set or convex combinations?

The prior \& posterior sets, \mathcal{M}_{0} and \mathcal{M}_{n}, of Diri or DiMn distributions, are used to define lower previsions $\underline{P}(\cdot)$ (by taking lower envelopes). Each $\underline{P}(\cdot)$ is equivalent to the class of its dominating linear previsions, which contains also all convex combinations of these Diri or DiMn distributions.

\square Optimization of $\mathbf{E}_{s t}(\lambda)$ or $\mathbf{E}_{s t}(\lambda \mid \boldsymbol{a})$

Since $E(\cdot)$ is linear, only requires optimization on the original set of Dirichlet's, \mathcal{M}_{0} or \mathcal{M}_{n}.
\square Optimization of $\boldsymbol{F}_{s t, \lambda}(u)$ or $\mathbf{F}_{s t, \lambda}(u \mid a)$
Similarly, since $F(\cdot)$ is the probability of the event ($\lambda \leq u$) (i.e. the expectation of the corresponding indicator function), optimization only requires the original set \mathcal{M}_{0} or \mathcal{M}_{n}.

\square Optimization attained

- often by corners for $t \in \mathcal{T}$, i.e. when some $t_{k} \rightarrow 1$, and all others tend to 0 ,
- but, not always

Inferences about θ_{k} from the IDM

\square Prior L\&U expectations and cdf's

Expectations

$$
\underline{E}\left(\theta_{k}\right)=0 \quad \text { and } \quad \bar{E}\left(\theta_{k}\right)=1
$$

Cdf's

$$
\begin{aligned}
& \underline{P}\left(\theta_{k} \leq u\right)=P(\operatorname{Beta}(s, 0) \leq u) \\
& \bar{P}\left(\theta_{k} \leq u\right)=P(\operatorname{Beta}(0, s) \leq u)
\end{aligned}
$$

\square Posterior L\&U expectations and cdf's

Expectations

$$
\underline{E}\left(\theta_{k} \mid \boldsymbol{a}\right)=\frac{a_{k}}{n+s} \quad \text { and } \quad \bar{E}\left(\theta_{k} \mid \boldsymbol{a}\right)=\frac{a_{k}+s}{n+s}
$$

Cdf's

$$
\begin{aligned}
& \underline{P}\left(\theta_{k} \leq u \mid \boldsymbol{a}\right)=P\left(\operatorname{Beta}\left(a_{k}+s, n-a_{k}\right) \leq u\right) \\
& \bar{P}\left(\theta_{k} \leq u \mid \boldsymbol{a}\right)=P\left(\operatorname{Beta}\left(a_{k}, n-a_{k}+s\right) \leq u\right)
\end{aligned}
$$

\square Optimization attained for $t_{k} \rightarrow 0$ or $t_{k} \rightarrow 1$. Equivalent to:

Haldane $+s$ extreme observations.

Extreme ID(M)M's (1)

\square Ignorance vs. Near-ignorance

- Ignorance in the IP theory: vacuous probabilistic statements
- Complete ignorance: ignorance about all gambles and events
- Near-ignorance: ignorance about some gambles and/or events
\square Two extremes
- $s \rightarrow 0$: Haldane's model, precise
- $s \rightarrow \infty$: vacuous model, maximally imprecise
\square Haldane's model: $s \rightarrow 0$
- Unreasonable account of prior uncertainty
- Inferences over-confident with extreme data
- You learn too quickly!

Extreme ID(M)M's (2)

\square Vacuous model: $s \rightarrow \infty$

- The IDM ($s_{\text {sup }}$) contains all IDM's with $s \leq$ $s_{\text {sup }}$, i.e. all Diri ${ }_{\text {st }}, s \leq s_{\text {sup }}, \boldsymbol{t} \in \mathcal{T}$. At the limit, the IDM ($s_{\text {sup }} \rightarrow \infty$) contains all Dirichlet's
- Hence, the $\operatorname{IDM}\left(s_{\text {sup }} \rightarrow \infty\right)$ contains all mixtures (convex combinations) of Dirichlet's
- But, any distribution on Θ can be approximated by a finite convex mixture of Dirichlet's. So, the $\operatorname{IDM}\left(s_{\text {sup }} \rightarrow \infty\right)$, contains all distributions on Θ
- Leads to vacuous statements for any gamble, and for both prior and posterior inferences
- You never learn anything!

\square Conclusions

- $s \rightarrow 0$: Too precise!
- $s \rightarrow \infty$: Too imprecise!

Hyperparameter s

\square Interpretations of s

- Determines the degree of imprecision in posterior inferences; the larger s, the more cautious inferences are
- s as a number of additional unknown observations
\square Hyperparameter s must be small
- If too high, inferences are too weak
\square Hyperparameter s must be large enough to
- Encompass objective Bayesian inferences: Haldane: $s>0$; Perks: $s \geq 1$
Other solutions? Problem: $s \geq K / 2$ or $\geq K$
- Encompass frequentist inferences
\square Suggested values: $s=1$ or $s=2$

Why does the ID(M)M satisfy the EP and RIP?

- Diri or DiMn distributions compatible with any tree. But, under a PDM or PDMM, total prior strength s scatters when moving down the tree
- In the IDM or IDMM, all allocations of s to the nodes are possible (due to imprecision)
- Each sub-tree inheritates the same s

PREDICTIVE INFERENCE FROM THE ID(M)M

Bayesian inference (recall)

\square Apply Bayes' theorem once

$\left\{\begin{array}{c}\text { Prior } P(\boldsymbol{\theta}) \\ + \\ \text { Sampling } P(\boldsymbol{a} \mid \boldsymbol{\theta})\end{array} \longrightarrow\left\{\begin{array}{c}\text { Posterior } P(\boldsymbol{\theta} \mid \boldsymbol{a}) \\ + \\ \text { Prior predictive } P(\boldsymbol{a})\end{array}\right.\right.$

\square Apply Bayes' theorem a second time

$\left\{\begin{array}{c}\text { Prior' } P(\boldsymbol{\theta} \mid \boldsymbol{a}) \\ + \\ \text { Sampl.' } P\left(\boldsymbol{a}^{\prime} \mid \boldsymbol{\theta}, \boldsymbol{a}\right)\end{array} \longrightarrow\left\{\begin{array}{c}\text { Posterior' } P\left(\boldsymbol{\theta} \mid \boldsymbol{a}^{\prime}, \boldsymbol{a}\right) \\ + \\ \text { Post. pred. } P\left(\boldsymbol{a}^{\prime} \mid \boldsymbol{a}\right)\end{array}\right.\right.$
\square Learning model about

- unknown chances: $P(\boldsymbol{\theta})$ updated to $P(\boldsymbol{\theta} \mid \boldsymbol{a})$
- future data: $P(\boldsymbol{a})$ updated to $P\left(\boldsymbol{a}^{\prime} \mid \boldsymbol{a}\right)$

Bayesian prediction from a single Diri (α) prior

\square Dirichlet-multinomial prior

$$
\begin{gathered}
\boldsymbol{a} \sim \operatorname{DiMn}(n ; \boldsymbol{\alpha}) \\
P(\boldsymbol{a})=\prod_{k}\binom{a_{k}+\alpha_{k}-1}{a_{k}} /\binom{n+s-1}{n} \\
=\binom{n}{\boldsymbol{a}} \frac{\alpha_{1}{ }^{\left[a_{1}\right] \cdots \alpha_{K}\left[a_{K}\right]}}{s^{[n]}}
\end{gathered}
$$

\square Dirichlet-multinomial posterior

$$
\begin{gathered}
\boldsymbol{a}^{\prime} \mid \boldsymbol{a} \sim \operatorname{DiMn}\left(n^{\prime} ; \boldsymbol{a}+\boldsymbol{\alpha}\right) \\
P\left(\boldsymbol{a}^{\prime} \mid \boldsymbol{a}\right)=\prod_{k}\binom{a_{k}^{\prime}+a_{k}+\alpha_{k}-1}{a_{k}^{\prime}} /\binom{n^{\prime}+n+s-1}{n^{\prime}} \\
=\binom{n^{\prime}}{\boldsymbol{a}^{\prime}} \frac{\left(a_{1}+\alpha_{1}\right)^{\left[a_{1}^{\prime}\right] \cdots\left(a_{K}+\alpha_{K}\right)^{\left[a_{K}^{\prime}\right]}}}{(n+s)^{\left[n^{\prime}\right]}}
\end{gathered}
$$

Beta-binomial marginals under a single Diri(α) prior

\square Beta-binomial marginal prior for a_{k} $a_{k} \sim \operatorname{BeBi}\left(n ; \alpha_{k}, s-\alpha_{k}\right)$

$$
\begin{aligned}
P\left(a_{k}\right) & =\frac{\binom{a_{k}+\alpha_{k}-1}{a_{k}}\binom{n-a_{k}+s-\alpha_{k}-1}{n-a_{k}}}{\binom{n+s-1}{n}} \\
& =\binom{n}{a_{k}} \frac{\alpha_{k}{ }^{\left[a_{k}\right]}\left(s-\alpha_{k}\right)^{\left[n-a_{k}\right]}}{s^{[n]}}
\end{aligned}
$$

\square Beta-binomial marginal posterior for a_{k}^{\prime}

$$
a_{k}^{\prime} \mid \boldsymbol{a} \sim \operatorname{BeBi}\left(n^{\prime} ; a_{k}+\alpha_{k}, n-a_{k}+s-\alpha_{k}\right)
$$

$$
\begin{aligned}
P\left(a_{k}^{\prime} \mid \boldsymbol{a}\right) & =\frac{\binom{a_{k}^{\prime}+a_{k}+\alpha_{k}-1}{a_{k}^{\prime}}\binom{n^{\prime}-a_{k}^{\prime}+n-a_{k}+s-\alpha_{k}-1}{n^{\prime}-a_{k}^{\prime}}}{\binom{n^{\prime}+n+s-1}{n^{\prime}}} \\
& =\binom{n^{\prime}}{a_{k}^{\prime}} \frac{\left(a_{k}+\alpha_{k}\right)^{\left[a_{k}^{\prime}\right]}\left(n-a_{k}+s-\alpha_{k}\right)^{\left[n^{\prime}-a_{k}^{\prime}\right]}}{(n+s)^{\left[n^{\prime}\right]}}
\end{aligned}
$$

Prior predictive distribution under the IDMM

\square Prior prediction about a and $f=a / n$
Prior uncertainty about \boldsymbol{a} is described by a set of DiMn distributions:

$$
\mathcal{M}_{0}=\left\{\operatorname{DiMn}(n ; s t): t \in \mathcal{S}^{\star}(1, K)\right\}
$$

\square Vacuous L\&U prior expectations of a_{k} and f_{k}

$$
\begin{array}{ll}
\underline{E}\left(a_{k}\right)=0 & \bar{E}\left(a_{k}\right)=n \\
\underline{E}\left(f_{k}\right)=0 & \bar{E}\left(f_{k}\right)=1
\end{array}
$$

obtained as $t_{k} \rightarrow 0$ and $t_{k} \rightarrow 1$ respectively
\square Vacuous L\&U prior cdf's of a_{k}
(Notation: $F_{k}(u)=P\left(a_{k} \leq u\right)$, for $\left.u=0, \cdots, n\right)$

$$
\begin{array}{ll}
\underline{F}_{k}(u)=0 & \text { if } 0 \leq u<n \\
\bar{F}_{k}(u)=1 & \text { if } 0 \leq u \leq n
\end{array}
$$

obtained as $t_{k} \rightarrow 1$ and $t_{k} \rightarrow 0$ respectively

Posterior predictive distribution under the IDMM (1)

\square Posterior prediction about $a^{\prime} \mid \boldsymbol{a}$ and $\boldsymbol{f}^{\prime} \mid \boldsymbol{a}$
Posterior uncertainty about \boldsymbol{a}^{\prime}, conditional on \boldsymbol{a}, is described by the corresponding set of updated DiMn distributions:

$$
\mathcal{M}_{n}=\left\{\operatorname{DiMn}\left(n^{\prime} ; \boldsymbol{a}+s t\right): \boldsymbol{t} \in \mathcal{S}^{\star}(1, K)\right\}
$$

\square L\&U posterior expectations of a_{k}^{\prime} and f_{k}^{\prime}

$$
\begin{aligned}
\underline{E}\left(a_{k}^{\prime} \mid \boldsymbol{a}\right)=n^{\prime} \frac{a_{k}}{n+s} & \bar{E}\left(a_{k}^{\prime} \mid \boldsymbol{a}\right)
\end{aligned}=n^{\prime} \frac{a_{k}+s}{n+s}, ~=\frac{a_{k}}{n+s} \quad \bar{E}\left(f_{k}^{\prime} \mid \boldsymbol{a}\right)=\frac{a_{k}+s}{n+s}
$$

obtained as $t_{k} \rightarrow 0$ and $t_{k} \rightarrow 1$ respectively

Posterior predictive distribution under the IDMM (2)

\square L\&U posterior cdf's of a_{k}^{\prime}
(Notation: $F_{k}(u \mid \boldsymbol{a})=P\left(a_{k}^{\prime} \leq u \mid \boldsymbol{a}\right)$, for $\left.u=0, \cdots, n^{\prime}\right)$

$$
\begin{aligned}
& \underline{F}_{k}(u \mid \boldsymbol{a})=\sum_{a_{k}^{\prime}=0}^{u} \frac{\binom{a_{k}^{\prime}+a_{k}+s-1}{a_{k}^{\prime}}\binom{n^{\prime}-a_{k}^{\prime}+n-a_{k}-1}{n^{\prime}-a_{k}^{\prime}}}{\binom{n^{\prime}+n+s-1}{n^{\prime}}} \\
& \bar{F}_{k}(u \mid \boldsymbol{a})=\sum_{a_{k}^{\prime}=0}^{u} \frac{\binom{a_{k}^{\prime}+a_{k}-1}{a_{k}^{\prime}}\binom{n^{\prime}-a_{k}^{\prime}+n-a_{k}+s-1}{n^{\prime}-a_{k}^{\prime}}}{\binom{n^{\prime}+n+s-1}{n^{\prime}}}
\end{aligned}
$$

obtained as $t_{k} \rightarrow 1$ and $t_{k} \rightarrow 0$ respectively
\square L\&U posterior exp. \& cdf's are obtained using either

$$
\begin{aligned}
& \operatorname{BeBi}\left(n^{\prime} ; a_{k}, n-a_{k}+s\right) \\
& \text { or } \operatorname{BeBi}\left(n^{\prime} ; a_{k}+s, n-a_{k}\right)
\end{aligned}
$$

Pooling categories

\square Pooling categories c_{k} and c_{l} into c_{j}

$$
\begin{aligned}
a_{j} & =a_{k}+a_{l} \\
a_{j}^{\prime} & =a_{k}^{\prime}+a_{l}^{\prime} \\
\alpha_{j} & =\alpha_{k}+\alpha_{l}
\end{aligned}
$$

\square Then

- Each DiMn_{K}, prior or posterior, is transformed into a $\operatorname{DiMn}_{K-1}$ where c_{j} replaces c_{k} and c_{l}, with all absolute strengths obtained by summation.
- Recursively, for any pooling in $J<K$ categories, the DiMn form and the value of s are both preserved.

\square Thus, in the IDMM,

L\&U prior and posterior probabilities for any event involving pooled counts with $J<K$ categories are invariant whether we

- Pool first, then apply IDMM(s)
- Apply IDMM(s) first, then pool

Properties \& principles

\square Prior ignorance about C and K

- Symmetry in the K categories
- Embedding pcple (EP) satisfied, due to the pooling property
\square Prior near-ignorance about $a \& f$
- Near-ignorance properties: L\&U exp. $E\left(a_{k}\right)$, $E\left(f_{k}\right)$ and cdf's $F_{a_{k}}(),. F_{f_{k}}($.$) are vacuous$
- Many other events, or derived parameters, have vacuous prior probabilities, or previsions
- But not all, unless $s \rightarrow \infty$

\square Posterior inferences

- Satisfy coherence (CP)
- Satisfy the likelihood principle (LP)
- Representation invariance (RIP) is satisfied, for the same reason as EP is

Frequentist prediction

\square "Bayesian and confidence limits for predic-

 tions" (Thatcher, 1964)- Considers binomial or hypergeometric data $(K=2), \boldsymbol{a}=\left(a_{1}, n-a_{1}\right)$.
- Studies the prediction about n^{\prime} future observations, $\boldsymbol{a}^{\prime}=\left(a_{1}^{\prime}, n^{\prime}-a_{1}^{\prime}\right)$.
- Derives lower and upper confidence limits (frequentist) for a_{1}^{\prime}.
- Compares these confidence limits to credibility limits (Bayesian) from a Beta prior.

\square Main result

- Upper confidence and credibility limits for a_{1}^{\prime} coincide iff the prior is $\operatorname{Beta}\left(\alpha_{1}=1, \alpha_{2}=0\right)$.
- Lower confidence and credibility limits for a_{1}^{\prime} coincide iff the prior is $\operatorname{Beta}\left(\alpha_{1}=0, \alpha_{2}=1\right)$.
\square IDM with $s=1$!

These two Beta priors are the most extreme priors under the IDM with $s=1$

Towards the IDMM? (Thatcher, 1964)

\square A "difficulty"

". . . is there a prior distribution such that both the upper and lower Bayesian limits always coincide with confidence limits? ...In fact there are not such distributions." (Thatcher, 1964, p. 184)

\square Reconciling frequentist and Bayesian

"...we shall consider whether these difficulties can be overcome by a more general approach to the prediction problem: in fact, by ceasing to restrict ourselves to a single set of confidence limits or a single prior distribution." (Thatcher, 1964, p. 187)

THE RULE OF SUCCESSION

Rule of succession problem

\square Problem $P\left(\boldsymbol{a}^{\prime} \mid \boldsymbol{a}\right)$ for $n^{\prime}=1$

- Prediction about the next observation
- Also called immediate prediction
\square A solution to it
- Called a rule of succession
- So many rules for such an (apparently) simple problem!
\square Highly debated problem
- Very early problem in Statistics
- Laplace computing the probability that the sun will rise tomorrow
\square Two types of problems / solutions
- Prior rule, before observing any data
- Posterior rule, after observing some data

The "Bag of marbles" example

\square "Bag of marbles" problems (Walley, 1996)

- "I have ... a closed bag of coloured marbles. I intend to shake the bag, to reach into it and to draw out one marble. What is the probability that I will draw a red marble?"
- "Suppose that we draw a sequence of marbles whose colours are (in order):
blue, green, blue, blue, green, red.

What conclusions can you reach about the probability of drawing a red marble on a future trial?"

\square Two problems of predictive inference

- Prior prediction, before observing any item
- Posterior prediction, after observing n items
\square Inference from a state of prior ignorance about the proportions of the various colours

Notation

\square Event, elementary or combined

Let B_{j} be the event that the next observation is of type c_{j}, where c_{j} is a subset of C with J elements

$$
1 \leq J \leq K
$$

If $J=1$, then $c_{j}=c_{k}$ is an elementary category If $J>1$, then c_{j} is a combined category

\square Define

The observed count and frequency of c_{j}

$$
a_{j}=\sum_{k \in j} a_{k} \quad f_{j}=\sum_{k \in j} f_{k}
$$

The prior strength, and relative strength, of c_{j} from a $\operatorname{Diri}(\boldsymbol{\alpha})$ prior

$$
\alpha_{j}=\sum_{k \in j} \alpha_{k} \quad t_{j}=\sum_{k \in j} t_{k}
$$

Rule of succession under a PDMM

\square Bayesian rule of succession

The rule of succession obtained from a PDMM, with hyper-parameters $\alpha=s t$, is

$$
\begin{aligned}
P\left(B_{j} \mid \boldsymbol{a}\right) & =\frac{a_{j}+\alpha_{j}}{n+s} \\
& =\frac{n f_{j}+s t_{j}}{n+s}
\end{aligned}
$$

The prior prediction, obtained for $n=a_{j}=0$, is

$$
P\left(B_{j}\right)=t_{j}
$$

\square Generally

Denoting $f_{j}^{\prime}=\sum_{k \in j} f_{k}^{\prime}$, the future frequencies in n^{\prime} data, and possibly $\theta_{j}=\sum_{k \in j} \theta_{k}$, the population frequencies, then

$$
\begin{aligned}
P\left(B_{j}\right) & =E\left(f_{j}^{\prime}\right)=E\left(\theta_{j}\right) \\
P\left(B_{j} \mid \boldsymbol{a}\right) & =E\left(f_{j}^{\prime} \mid \boldsymbol{a}\right)=E\left(\theta_{j} \mid \boldsymbol{a}\right)
\end{aligned}
$$

Prior rule of succession under the IDMM

\square Prior rule of succession

The L\&U prior probabilities of B_{j} are vacuous:

$$
\underline{P}\left(B_{j}\right)=0 \quad \text { and } \quad \bar{P}\left(B_{j}\right)=1,
$$

obtained as $t_{j} \rightarrow 0$ and $t_{j} \rightarrow 1$ respectively

\square Prior ignorance

Prior imprecision is maximal, L\&U probabilities are vacuous:

$$
\Delta\left(B_{j}\right)=\bar{P}\left(B_{j}\right)-\underline{P}\left(B_{j}\right)=1
$$

irrespectively of s

Posterior rule of succession under the IDMM

\square Posterior rule of succession

After data \boldsymbol{a} have been observed, the posterior L\&U probabilities of event B_{j} are

$$
\underline{P}\left(B_{j} \mid \boldsymbol{a}\right)=\frac{a_{j}}{n+s} \quad \text { and } \quad \bar{P}\left(B_{j} \mid \boldsymbol{a}\right)=\frac{a_{j}+s}{n+s},
$$

obtained as $t_{j} \rightarrow 0$ and $t_{j} \rightarrow 1$ respectively

\square Posterior imprecision

$$
\Delta\left(B_{j} \mid \boldsymbol{a}\right)=\bar{P}\left(B_{j} \mid \boldsymbol{a}\right)-\underline{P}\left(B_{j} \mid \boldsymbol{a}\right)=\frac{s}{n+s}
$$

\square L\&U probabilities and f_{j}
The interval always contains $f_{j}=a_{j} / n$. The L\&U probabilities both converge to f_{j} as n increases.
\square Rule independent from C, K and J

Rule of succession and imprecision

\square Degree of imprecision about B_{j}

- Prior state: imprecision is maximal

$$
\Delta\left(B_{j}\right)=1
$$

- Posterior state:

$$
\Delta\left(B_{j} \mid \boldsymbol{a}\right)=\frac{s}{n+s}
$$

\square Interpretation of s

Hyper-parameter s controls how fast imprecision diminishes with $n: s$ is the number of observations necessary to halve imprecision about B_{j}.

Objective Bayesian models

\square Bayesian rule of succession

The rule of succession obtained from a single symmetric DiMn distribution, $\operatorname{DiMn}\left(n^{\prime} ; \boldsymbol{\alpha}\right)$ with $n^{\prime}=1$ and $\alpha_{k}=s / K$, is

$$
P\left(B_{j} \mid \boldsymbol{a}\right)=\frac{a_{j}+\alpha_{j}}{n+s}=\frac{n f_{j}+s \frac{J}{K}}{n+s}
$$

\square Objective Bayesian rules: $P\left(B_{j} \mid \boldsymbol{a}\right)=$

$$
\begin{aligned}
\text { Haldane } & a_{j} / n \\
\text { Perks } & \left(a_{j}+J / K\right) /(n+1) \\
\text { Jeffreys } & \left(a_{j}+J / 2\right) /(n+K / 2) \\
\text { Bayes } & \left(a_{j}+J\right) /(n+K)
\end{aligned}
$$

\square Dependence on K and J except Haldane

\square Particular case $J=1, K=2$
If $a_{j}=n / 2$, i.e. $f_{j}=1 / 2$, each Bayesian rule leads to $P\left(B_{j} \mid \boldsymbol{a}\right)=1 / 2$, whether $n=0$, or $n=10,100$ or 1000 .

Categorization arbitrariness

\square Arbitrariness of C, i.e. of J and K

Most extremes cases obtained as $K \rightarrow \infty$
\square Bayesian rules

Yield intervals when arbitrariness is introduced

Bayes-Laplace $[0 ; 1]$,	$\operatorname{IDM}(s \rightarrow \infty)$	
Jeffreys	$[0 ; 1]$,	$\operatorname{IDM}(s \rightarrow \infty)$
Perks	$\left[\frac{a_{j}}{n+1} ; \frac{a_{j}+1}{n+1}\right]$,	$\operatorname{IDM}(s=1)$
Haldane	$\left[\frac{a_{j}}{n} ; \frac{a_{j}}{n}\right]$,	$\operatorname{IDM}(s \rightarrow 0)$

Frequentist rule of succession

\square "Bayesian and confidence limits for prediction" (Thatcher, 1964)

- Studies the particular case of immediate prediction
\square Main result (reminder)
- Upper confidence and credibility limits for a_{1}^{\prime} coincide iff the prior is $\operatorname{Beta}\left(\alpha_{1}=1, \alpha_{2}=0\right)$.
- Lower confidence and credibility limits for a_{1}^{\prime} coincide iff the prior is $\operatorname{Beta}\left(\alpha_{1}=0, \alpha_{2}=1\right)$.

\square Frequentist "rule of succession"

When reinterpreted as Bayesian rules of succession, the lower and upper confidence limits respectively correspond to:

$$
P\left(B_{j} \mid \boldsymbol{a}\right)=\frac{a_{j}}{n+1} \quad \text { and } \quad P\left(B_{j} \mid \boldsymbol{a}\right)=\frac{a_{j}+1}{n+1}
$$

i.e. to the IDM interval for $s=1$.

CONCLUSIONS

Comments on predictive inference

\square Predictive approach is more fundamental (see, Geisser, 1993)

- Finite population \& data
- Models observables only, not hypothetical parameters
- Relies on the exchangeability assumption only.
- Pearson (1920) considered predictive inference as "the fundamental problem of practical statistics"
\square Predictive approach is more natural,
\square For the IDMM, in particular
- Gives the IDM as a limiting case as $n^{\prime} \rightarrow \infty$
- Covers sampling with replacement from a finite population

Why using a set of Dirichlet's Walley (1996, p. 7)

\square About Dirichlet's

(a) Dirichlet prior distributions are mathematically tractable because . . . they generate Dirichlet posterior distributions;
(b) when categories are combined, Dirichlet distributions transform to other Dirichlet distributions (this is the crucial property which ensures that the RIP is satisfied);
(c) sets of Dirichlet distributions are very rich, because they produce the same inferences as their convex hull and any prior distribution can be approximated by a finite mixture of Dirichlet distributions;
(d) the most common Bayesian models for prior ignorance about $\boldsymbol{\theta}$ are Dirichlet distributions.
\square Same arguments hold for DiMn distributions

Links between IDM and IDMM

\square Parametric and predictive inference

In general, in both precise Bayesian models and in the $I D(M) M$,

- $\theta, \theta \mid a$ yield $f, f^{\prime} \mid a$ (from Bayes' theorem)
- $f, f^{\prime} \mid a$ yield $\theta, \theta \mid a\left(\right.$ as $\left.n^{\prime} \rightarrow \infty\right)$

\square Equivalence between IDM and IDMM

- The IDM and the IDMM are equivalent, if we assume that n^{\prime} can tend to infinity
- Any IDMM statement about f^{\prime} which is independent of n^{\prime} is also a valid IDM statement about $\boldsymbol{\theta}$

\square Two views of the IDMM

- The IDMM is the predictive side of the IDM
- The IDMM is a model of its own

Fundamental properties of the ID(M)M

\square Principles

Satisfies several desirable principles for prior ignorance: SP, EP, RIP, LP, SRP, coherence.

\square ID(M)M vs. Bayesian and frequentist

- Answers several difficulties of alternative approaches
- Provides means to reconcile frequentist and objective Bayesian approaches (Walley, 2002)

\square Generality

More general than for multinomial data. Valid under a general hypothesis of exchangeability between observed and future data. (Walley, Bernard, 1999).
\square Degree of imprecision and n
Degree of imprecision in posterior inferences enables one to distinguish between: (a) prior uncertainty still dominates, (b) there is substantial information in the data.
The two cases can occur within the same data set.

REFERENCES

Berger, J. O., Bernardo, J. M. (1992), "Ordered Group Reference Priors with Application to the Multinomial Problem", Biometrika, 79, no. 1, pp. 2-5-37.
Bernard, J.-M. (1996), "Bayesian Interpretation of Frequentist Procedures for a Bernoulli Process", The American Statistician, 50, no. 1, 7-13.
Bernard, J.-M. (1997), "Bayesian Analysis of Tree-Structured Categorized Data", Revue Internationale de Systémique, Vol. 11 no. 1, pp. 1-1-29.
Fang, K. T., Kotz, S., Ng, K. W. (1990), Symetric Multivariate and Related Distributions, New-York: Chapman and Hall.
Geisser, S. (1993), Predictive Inference: An Introduction, Monographs on Statistics and Applied Probability 55, New-York: Chapman \& Hall.
Haldane, J. B. S. (1948), "The Precision of Observed Values of Small Frequencies," Biometrika, 35, pp. 2-97300.

Hutter, M. (2003). Robust Estimators under the Imprecise Dirichlet Model. In Bernard J.-M., Seidenfeld T., Zaffalon M. (Eds), ISIPTA'03: Proceedings of the Third International Symposium on Imprecise Probabilities and Their Applications, Lugano, Switzerland, Proceedings in Informatics 18, Waterloo, Ontario, Canada: Carleton Scientific, pp. 274-289.
Jeffreys, H. (1946), " An Invariant Form for the Prior Probability in Estimation Problems", Proceedings of the Royal Society of London, Ser. A, 186, pp. 4-53-461.
Jeffreys, H. (1961), Theory of Probability, 3rd ed., Oxford: Clarendon Press.

Kass, R. E., Wasserman, L. (1996), " The Selection of Prior Distributions by Formal Rules", Journal of the American Statistical Association, Vol. 91, no. 435, pp. 1-3431370.

Perks, F. J. A. (1947), "Some Observations on Inverse Probability Including a New Indifference Rule (with discussion), " Journal of the Institute of Actuaries, 73, pp. 2-85-334.
Thatcher, A. R. (1964), "Relationships Between Bayesian and Confidence Limits for Predictions" (with discussion), Journal of the Royal Statistical Society, Ser. B, 26, pp. 1-76-210.
Walley, P. (1991), Statistical Reasoning with Imprecise Probabilities, Monographs on Statistics and Applied Probability 42, London: Chapman \& Hall.
Walley, P. (1996), " Inferences from Multinomial Data: Learning about a Bag of Marbles", Journal of the Royal Statistical Society, Ser. B., 58 no. 1, pp. 3---57.
Walley, P. (2002). Reconciling frequentist properties with the likelihood principle. Journal of Statistical Planning and Inference, Vol. 105, no. 1, pp. 35-65.
Walley, P., Bernard, J.-M. (1999), "Imprecise Probabilistic Prediction for Categorical Data", Technical Report CAF-9901, Laboratoire Cognition et Activités Finalisées, University Paris 8, Saint-Denis, France, January 1999.

