Independence Concepts in Imprecise Probability

Fabio G. Cozman - Universidade de Sao Paulo
fgcozman@usp.br

Or, perhaps...

Structural Assessments

in the Theory of Credal Sets

Overview

1. A review of some basic definitions: credal sets, lower expectations and probabilities, decision making, and the like.
2. Structural assessments: vacuity, uniformity, exchangeability.
3. A brief review of stochastic (conditional) independence.
4. Confirmational/strict/strong/epistemic/Kuznetsov/others independence.
5. Comparison.
6. A look into the messy world of zero probabilities.

Easy warm-up

- Possibility space Ω with states ω; events are subsets of Ω.
- Random variables and indicator functions.
- Bounded function $X: \Omega \rightarrow \Re$.
- Special type: indicator function of event A :
- Denoted by A as well.
- $A(\omega)=1$ if $\omega \in A ; 0$ otherwise.

Buying/selling variables

- Buy X for $\alpha: X-\alpha$.
- Sell X for β : $\beta-X$.
- Must satisfy: $\beta>\alpha$.
- Pay less than $\underline{E}[X]$.
- Sell for more than $\bar{E}[X]$.

Fair prices

- Suppose that $\underline{E}[X]=\bar{E}[X]$ for some X.
- Then $E[X] \doteq \underline{E}[X]$ is the fair price of X.
- What if all variables had fair prices?
- What would the resulting expectation functional satisfy?

Axioms for expectations

EU1 If $\alpha \leq X \leq \beta$, then $\alpha \leq E[X] \leq \beta$.
EU2 $E[X+Y]=E[X]+E[Y]$.

Axioms for expectations

EU1 If $\alpha \leq X \leq \beta$, then $\alpha \leq E[X] \leq \beta$.
EU2 $E[X+Y]=E[X]+E[Y]$.

Some consequences:

1. $X \geq Y \Rightarrow E[X] \geq E[Y]$.
2. $E[\alpha X]=\alpha X$.

Supremum buying/infimum selling prices

- If one holds a set of expectations for X : willing to pay up to $\inf E[X]$ for X.
- Likewise: willing to sell X for more than $\sup E[X]$.

So, naturally:

$$
\begin{array}{cl}
\underline{E}[X]=\inf E[X] & \text { (lower expectation), } \\
\bar{E}[X]=\sup E[X] & \text { (upper expectation). }
\end{array}
$$

Familiar properties

- $\underline{E}[X] \geq \inf X$;
- $\underline{E}[\alpha X]=\alpha \underline{E}[X]$ for $\alpha \geq 0$;
- $\underline{E}[X+Y] \geq \underline{E}[X]+\underline{E}[Y]$.

Probabilities

- Expectation $E[A]$ indicates how much we expect A to "happen."
- Definition: The probability $P(A)$ is $E[A]$.
- Properties of a probability measure:

PU1 $P(A) \geq 0$.
PU2 $P(\Omega)=1$.
PU3 If $A \cap B=\emptyset, P(A \cup B)=P(A)+P(B)$.

Conditional expectations/probabilities

- Conditional expectation of X given B,

$$
E[X \mid B]=\frac{E[B X]}{P(B)} \quad \text { if } P(B)>0 .
$$

- Bayes rule: If $P(B)>0$, then

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

Credal sets

- A credal set is a set of probability measures (distributions).
- A credal set is usually defined by a set of assessments.

Example:

1. $\Omega=\left\{\omega_{1}, \omega_{2}, \omega_{3}\right\}$.
2. $P\left(\omega_{i}\right)=p_{i}$.
3. $p_{1}>p_{3}, 2 p_{1} \geq p_{2}, p_{1} \leq 2 / 3$ and $p_{3} \in[1 / 6,1 / 3]$.
4. Take points $P=\left(p_{1}, p_{2}, p_{3}\right)$.

Some geometry

1. $\Omega=\left\{\omega_{1}, \omega_{2}, \omega_{3}\right\}$.
2. $P\left(\omega_{i}\right)=p_{i}$.
3. $p_{1}>p_{3}, 2 p_{1} \geq p_{2}, p_{1} \leq 2 / 3$ and $p_{3} \in[1 / 6,1 / 3]$.
4. Take points $P=\left(p_{1}, p_{2}, p_{3}\right)$.

Baricentric coordinates

The coordinates of a distribution are read on the lines bissecting the angles of the triangle.

Exercise

Consider a variable X with 3 possible values x_{1}, x_{2} and x_{3}. Suppose the following assessments are given:

$$
\begin{gathered}
p\left(x_{1}\right) \leq p\left(x_{2}\right) \leq p\left(x_{3}\right) ; \\
p\left(x_{i}\right) \geq 1 / 20 \quad \text { for } i \in\{1,2,3\} ; \\
p\left(x_{3} \mid x_{2} \cup x_{3}\right) \leq 3 / 4 .
\end{gathered}
$$

Show the credal set determined by these assessments in baricentric coordinates.

Back to credal sets

- Credal set with distributions for X is denoted $K(X)$.
- Given credal set $K(X)$:
- $\underline{E}[X]=\inf _{P \in K(X)} E_{P}[X]$.
- $\bar{E}[X]=\sup _{P \in K(X)} E_{P}[X]$.
- For closed convex credal sets, lower and upper expectations are attained at vertices.
- A closed convex credal set is completely characterized by the associated lower expectation.
- That is, there is only one lower expectation for a given closed convex credal set.

Exercise

- A closed convex credal set is completely characterized by the associated lower expectation.
- But given a lower expectation, many credal sets generate it.
- Usually only the maximal closed convex set is chosen.
- Exercise: Given the assessments in the previous exercise, find two credal sets that yield the same lower expectation.

Common ways to generate credal sets I

From partial preferences:

- $X \succ Y$ means " X is preferred to Y."
- Axiomatize \succ as partial order.
- Then:

$$
X \succ Y \quad \text { iff } \quad E_{P}[X]>E_{P}[Y] \text { for all } P \in K
$$

- Credal sets with identical vertices produce the same \succ.
- Focus has been on unique maximal credal set that represents \succ.
- Smaller credal sets have no "behavioral" significance.

Common ways to generate credal sets II

From one-sided betting:

- Variables are gambles.
- Buy/sell gambles using $\underline{E}[X]$ and $\bar{E}[X]$.
- Some constraints, such as $\sum_{i=1}^{n} \alpha_{i}\left(X_{i}-\underline{E}\left[X_{i}\right]\right) \geq 0$ for $\alpha_{i} \geq 0$.
- Credal set is produced by the set of dominating expectations:

$$
\{E: E[X] \geq \underline{E}[X]\} .
$$

- Several credal sets produce the same lower expectations.
- But only maximal closed one is given "behavioral" significance.

Decision making with credal sets

- Set of acts \mathcal{A}, need to choose one.
- There are several criteria!
- Γ-minimax:

$$
\arg \max _{X \in \mathcal{A}} \underline{E}[X] .
$$

- Maximality: maximal elements of the partial order \succ. That is, X is maximal if
there is no $Y \in \mathcal{A}$ such that $E_{P}[Y-X]>0$ for all $P \in K$.
- E-admissibility: maximality for at least a distribution. That is, X is E-admissible if
there is $P \in K$ such that $E_{P}[X-Y] \geq 0$ for all $Y \in \mathcal{A}$.

Comparing criteria

Three acts: $a_{1}=0.4 ; a_{2}=0 / 1$ if $A / A^{c} ; a_{3}=1 / 0$ if A / A^{c}.

$P(A) \in[0.3,0.7]$.
Γ-minimax: a_{1}; Maximal: all of them; E-admissible: $\left\{a_{2}, a_{3}\right\}$.

Exercise

Credal set $\left\{P_{1}, P_{2}\right\}$:

$$
\begin{array}{lll}
P_{1}\left(s_{1}\right)=1 / 8, & P_{1}\left(s_{2}\right)=3 / 4, & P_{1}\left(s_{3}\right)=1 / 8, \\
P_{2}\left(s_{1}\right)=3 / 4, & P_{2}\left(s_{2}\right)=1 / 8, & P_{2}\left(s_{3}\right)=1 / 8,
\end{array}
$$

Acts $\left\{a_{1}, a_{2}, a_{3}\right\}$:

	s_{1}	s_{2}	s_{3}
a_{1}	3	3	4
a_{2}	2.5	3.5	5
a_{3}	1	5	4.

Which one to select?
And if we take convex hull of credal set?

Overview

1. Some basic (mostly known) definitions: credal sets, lower expectations and probabilities, decision making, and the like.
2. Structural assessments: vacuity, uniformity, exchangeability.
3. A brief review of stochastic (conditional) independence.
4. Confirmational/strict/strong/epistemic/Kuznetsov/others independence.
5. Comparison.
6. A look into the messy world of zero probabilities.

Structural assessments

- What is it?
- An assessment that alone constrains a large (possibly infinite) number of expectations.
- A simple example: vacuity.
- A credal set $K(X)$ is vacuous when it contains every possible distribution for X.

Vacuity

- Suppose $K(X)$ is vacuous.
- Then:

$$
\underline{E}[f(X)]=\min _{\omega \in \Omega} f(X(\omega)), \quad \bar{E}[f(X)]=\max _{\omega \in \Omega} f(X(\omega)) .
$$

- An ϵ-contaminated credal set is a "mixture" of a precise distribution and a vacuous credal set:

$$
(1-\epsilon) P_{0}+\epsilon Q, \quad \text { any } Q .
$$

Uniformity

- Every ω is subject to identical assessments.
- Extreme case: vacuity.
- Extreme case: uniform distribution.
- Intermediate case: $P\left(\omega_{i}\right) \in[1 / 4,1 / 2]$.

Exercise

- Urn with $m>0$ balls, numbered from 1 to m
- r balls are red and $m-r$ balls are black.
- n samples with replacement.
- ω is a numbered sequence produced this way.
- m^{n} possible numbered sequences.
- Assume uniformity: $P(\omega) \geq(1-\epsilon) m^{-n}$.
- What is the lower probability that k balls are red?

Exchangeability

- A basic structural assessment.
- To simplify, take categorical variables $\mathbf{X}=\left[X_{1}, \ldots, X_{m}\right]$.
- Denote by π_{m} a permutation of integers $\{1, \ldots, m\}$, and by $\pi_{m}(i)$ the i th number in the permutation.
- Denote

$$
\{\mathbf{X}=\mathbf{x}\} \doteq \cap_{i=1}^{m}\left\{X_{i}=x_{i}\right\}
$$

and

$$
\left\{\pi_{m} \mathbf{X}=\mathbf{x}\right\} \doteq \cap_{i=1}^{m}\left\{X_{\pi_{m}(i)}=x_{i}\right\}
$$

Definition of exchangeability

- Variables X_{1}, \ldots, X_{m} are exchangeable when

$$
\underline{E}\left[\{\mathbf{X}=\mathbf{x}\}-\left\{\pi_{m} \mathbf{X}=\mathbf{x}\right\}\right]=0
$$

for any permutation π_{m}.

- That is, the order of variables does not matter: trading $\{\mathbf{X}=\mathbf{x}\}$ for $\left\{\pi_{m} \mathbf{X}=\mathbf{x}\right\}$ does not seem advantageous.

Walley's exchangeability theorem

- We have

$$
\begin{aligned}
0 & =\underline{E}\left[\{\mathbf{X}=\mathbf{x}\}-\left\{\pi_{m} \mathbf{X}=\mathbf{x}\right\}\right] \\
& \leq \bar{E}\left[\{\mathbf{X}=\mathbf{x}\}-\left\{\pi_{m} \mathbf{X}=\mathbf{x}\right\}\right] \\
& =-\underline{E}\left[\left\{\pi_{m} \mathbf{X}=\mathbf{x}\right\}-\{\mathbf{X}=\mathbf{x}\}\right]=0 .
\end{aligned}
$$

- Hence every distribution in the credal set $K\left(X_{1}, \ldots, X_{m}\right)$ satisfies

$$
P(\mathbf{X}=\mathbf{x})=P\left(\pi_{m} \mathbf{X}=\mathbf{x}\right) \quad \text { for any permutation } \pi_{m} .
$$

- In words: Exchangeability implies elementwise exchangeability.

Exercise

What is the largest credal set that satisfies exchangeability of two binary variables?

Exercise

What is the largest credal set that satisfies exchangeability of two binary variables?
$p_{1}=P(X=0, Y=0), p_{2}=P(X=1, Y=1)$,
$p_{3}=P(X=1, Y=0)=P(X=0, Y=1)$.

Exercise

- Suppose we have 4 binary variables that are exchangeable.
- What are the conditions on the probabilities
$P\left(X_{1}=x_{1}, X_{2}=x_{2}, X_{3}=x_{3}, X_{4}=x_{4}\right)$?

Exercise

- Suppose we have 4 binary variables that are exchangeable.
- What are the conditions on the probabilities
$P\left(X_{1}=x_{1}, X_{2}=x_{2}, X_{3}=x_{3}, X_{4}=x_{4}\right)$?
Here they are:
- One success: $P(0001)=P(0010)=P(0100)=P(1000)$.
- Two successes: $P(1001)=P(1010)=P(1100)=$ $P(0101)=P(0110)=P(0011)$.
- Three successes:
$P(1110)=P(1101)=P(1011)=P(0111)$.

Exercise

- Suppose we have 4 binary variables that are exchangeable.
- Suppose $P(0000)=1 / 10$ and $P(1111)=1 / 2$.
- Draw the credal set.

Exercise

- Suppose we have 4 binary variables that are exchangeable.
- Suppose $P(0000)=1 / 10$ and $P(1111)=1 / 2$.
- Draw the credal set.

Set of triplets [$P(0001), P(0011), P(0111)$] satisfying

$$
\begin{gathered}
P(0001) \geq 0, \quad P(0011) \geq 0, \quad P(0111) \geq 0, \\
4 P(0001)+6 P(0011)+4 P(0111)=1-(1 / 2+1 / 10)=2 / 5 .
\end{gathered}
$$

Exercise

- Suppose we have 4 binary variables that are exchangeable.
- Suppose $P(0000)=1 / 10$ and $P(1111)=1 / 2$.
- Draw the credal set.

Facts about exchangeability

- Any subset of exchangeable variables is exchangeable.
- Exchangeability is a "convex" concept.
- For X_{1}, \ldots, X_{m}, what matters is

$$
P\left(\sum_{i=1}^{m} X_{i}=r\right) .
$$

- For each $r,\binom{m}{r}$ probabilities with identical value

$$
\frac{P\left(\sum_{i=1}^{n} X_{i}=r\right)}{\binom{m}{r}}
$$

Representation for binary variables

- Consider m exchangeable variables, and take initial n variables.
- Then $P\left(X_{1}=1, \ldots, X_{k}=1, X_{k+1}=0, \ldots, X_{n}=0\right)$ is equal to

$$
\sum_{r=k}^{m-n+k} \frac{\binom{m-n}{r-k}}{\binom{m}{r}} P\left(\sum_{i=1}^{n} X_{i}=r\right) .
$$

de Finetti's theorem (binary variables)

- Take $m \rightarrow \infty$:

Then $P\left(X_{1}=1, \ldots, X_{k}=1, X_{k+1}=0, \ldots, X_{n}=0\right)$ is equal to

$$
\int_{0}^{1} \theta^{k}(1-\theta)^{n-k} d F(\theta)
$$

- Here θ is the probability of $\left\{X_{1}=1\right\}$, and the distribution function $F(\theta)$ acts as a "prior" over θ.
- So: we have a credal set $K(\theta)$.
- Moreover: this credal set is convex!

Exercise

Draw the credal set $K(X, Y)$ given the structural assessments:

- X and Y are exchangeable.
- X and Y are the first two variables in a sequence of three exchangeable variables.
- X and Y are the first two variables in a sequence of five exchangeable variables.
- X and Y are the first two variables in a sequence of infinitely many exchangeable variables.

Overview

1. Some basic (mostly known) definitions: credal sets, lower expectations and probabilities, decision making, and the like.
2. Structural assessments: vacuity, uniformity, exchangeability.
3. A brief review of stochastic (conditional) independence.
4. Confirmational/strict/strong/epistemic/Kuznetsov/others independence.
5. Comparison.
6. A look into the messy world of zero probabilities.

Now, stochastic independence

1. X is stochatically irrelevant to Y when:

$$
E[f(Y) \mid\{X \in A\}]=E[f(Y)]
$$

for any bounded function f, whenever $P(\{X \in A\})>0$.
2. Definition is symmetric!
3. So, take it to mean stochastic independence of X and Y.

Symmetry

1. X is irrelevant to Y iff

$$
P(\{Y \in B\} \mid\{X \in A\})=P(\{Y \in B\})
$$

whenever $P(\{X \in A\})>0$.
2. X is irrelevant to Y iff

$$
P(\{Y \in B\} \cap\{X \in A\})=P(\{Y \in B\}) P(\{X \in A\}) .
$$

Complete definition

Variables $\left\{X_{i}\right\}_{i=1}^{n}$ are independent if

$$
E\left[f_{i}\left(X_{i}\right) \mid \cap_{j \neq i}\left\{X_{j} \in A_{j}\right\}\right]=E\left[f_{i}\left(X_{i}\right)\right],
$$

for

- all functions $f_{i}\left(X_{i}\right)$
- all events $\cap_{j \neq i}\left\{X_{j} \in A_{j}\right\}$ with positive probability.

Other forms

Independence of variables $\left\{X_{i}\right\}_{i=1}^{n}$ is equivalent to:

- For all functions $f_{i}\left(X_{i}\right)$,

$$
E\left[\prod_{i=1}^{n} f_{i}\left(X_{i}\right)\right]=\prod_{i=1}^{n} E\left[f_{i}\left(X_{i}\right)\right]
$$

- For all sets of events $\left\{A_{i}\right\}_{i=1}^{n}$,

$$
P\left(\cap_{i=1}^{n}\left\{X_{i} \in A_{i}\right\}\right)=\prod_{i=1}^{n} P\left(\left\{X_{i} \in A_{i}\right\}\right) .
$$

Independence for events

1. A and B are independent

$$
P(A \mid B)=P(A) \quad \text { whenever } P(B)>0 ;
$$

or, equivalently,

$$
P(A \cap B)=P(A) P(B) .
$$

2. For all subsets of events $\left\{A_{i}\right\}_{i=1}^{n}$,

$$
P\left(\cap_{i}\left\{X_{i} \in A_{i}\right\}\right)=\prod_{i} P\left(\left\{X_{i} \in A_{i}\right\}\right) .
$$

Weak law of large numbers

1. Remember Chebyshev inequality:

$$
P(|X-E[X]| \geq t) \leq \frac{V[X]}{t^{2}}
$$

2. Apply inequality to $\bar{X}=\sum_{i} X_{i} / n$:

$$
P(|\bar{X}-\mu| \geq \epsilon) \leq \frac{\sigma^{2}}{n \epsilon^{2}},
$$

3. The larger the n, the smaller this probability!

$$
\forall \epsilon>0, \quad \lim _{n \rightarrow \infty} P(|\bar{X}-\mu| \geq \epsilon)=0
$$

4. There are other versions with different assumptions.

(Finite) strong law of large numbers

- Finitistic version:
- for all $\epsilon>0$,
- there is integer N
- such that for every positive integer k,

$$
P\left(\exists n \in[N, N+k]:\left|\frac{\sum_{i=1}^{n} X_{i}}{n}-\mu\right|>\epsilon\right)<\epsilon .
$$

Strong law of large numbers

In a sequence of variables X_{1}, \ldots, X_{n}, the mean converges to the expectation with probability one:

$$
P\left(\lim _{n \rightarrow \infty} \frac{\sum_{i=1}^{n} X_{i}}{n}=\mu\right)=1
$$

1. It requires countable additivity; that is,

$$
P\left(\cup_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{\infty} P\left(A_{i}\right) .
$$

2. It is really a strong result.

The graphoid properties

Proposed as a way to encode the intuitive meaning of "independence":

Symmetry: $(X \Perp Y \mid Z) \Rightarrow(Y \Perp X \mid Z)$
Decomposition: $(X \Perp(W, Y) \mid Z) \Rightarrow(X \Perp Y \mid Z)$
Weak union: $(X \Perp(W, Y) \mid Z) \Rightarrow(X \Perp W \mid(Y, Z))$
Contraction:

$$
(X \Perp Y \mid Z) \&(X \Perp W \mid(Y, Z)) \Rightarrow(X \Perp(W, Y) \mid Z)
$$

Satisfied by many structures (graphs, lattices, etc).

Other graphoid properties

Often added:
Redundancy: $(X \Perp Y \mid X)$
Often added (true when probabilities are positive):
Intersection

$$
(X \Perp W \mid(Y, Z)) \&(X \Perp Y \mid(W, Z)) \Rightarrow(X \Perp(W, Y) \mid Z)
$$

Not discussed further in this talk.

Exercise

Prove decomposition, weak union and contraction for stochastic independence.

Overview

1. Some basic (mostly known) definitions: credal sets, lower expectations and probabilities, decision making, and the like.
2. Structural assessments: vacuity, uniformity, exchangeability.
3. A brief review of stochastic (conditional) independence.
4. Confirmational/strict/strong/epistemic/Kuznetsov/others independence.
5. Comparison.
6. A look into the messy world of zero probabilities.

Strict independence

- X and Y are strictly independent if for all $P \in K(X, Y)$, $P(X \in A \mid Y \in B)=P(X \in A) \quad$ whenever $P(Y \in B)>0$.
- That is, elementwise stochastic independence.
- This concept violates convexity (presumably has no "behavioral" justification).

Failure of convexity

Example of Jeffrey's:

- Binary variables X and Y, strictly independent.
- $K(X, Y)$: convex hull of P_{1} and P_{2},

$$
P_{1}(X=0)=P_{1}(Y=0)=1 / 3, \quad P_{2}(X=0)=P_{2}(Y=0)=2 /
$$

- Take $P_{1 / 2}=P_{1} / 2+P_{2} / 2$ (by convexity, $P_{1 / 2} \in K(X, Y)$).
- However,

$$
\begin{aligned}
P_{1 / 2}(X=0, Y=0)= & P_{1}(X=0) P_{1}(Y=0) / 2+ \\
& P_{2}(X=0) P_{1}(Y=0) / 2 \\
= & 5 / 18 \neq 1 / 4 \\
= & P_{1 / 2}(X=0) P_{1 / 2}(Y=0) .
\end{aligned}
$$

Independence surface for two events

Confirmational independence

- I. Levi, the pioneer on convex credal sets, detected this problem with strict independence.
- His proposal: Y is confirmationally irrelevant to X if

$$
K(X \mid Y \in B)=K(X) \quad \text { for nonempty }\{Y \in B\},
$$

- His position: use strict independence if needed, but take convex hull (does not affect partial preferences...).

Strong independence

- X and Y are strongly independent when $K(X, Y)$ is the convex hull of a set of distributions satisfying strict independence.
- Equivalently (for closed credal sets):
X and Y are strongly independent iff for any bounded function $f(X, Y)$,

$$
\underline{E}[f(X, Y)]=\min \left(E_{P}[f(X, Y)]: P=P_{X} P_{Y}\right) .
$$

Type-1/2 products and others

- Walley and Fine (1982) called this expression an independent product when restricted to indicators:

$$
\underline{E}[A(X, Y)]=\min \left(E_{P}[A(X, Y)]: P=P_{X} P_{Y}\right) .
$$

- This is Weichselberger's definition of mutual independence.
- In his book, Walley (1991) called the general expression a type-1 product.
- ...and type-2 products refer to the case of identical marginals.

Epistemic irrelevance

- Walley also proposes a different concept: Y is epistemically irrelevant to X if for any bounded function $f(X)$,

$$
\underline{E}[f(X) \mid Y \in B]=\underline{E}[f(X)] \quad \text { for nonempty }\{Y \in B\} .
$$

- Definition is what Smith refers to as independence in his pioneering work on medial odds.
- If credal sets are closed and convex, then epistemic irrelevance is identical to Levi's confirmational irrelevance.

Exercise

- Consider a finite possibility space.
- Suppose $K(Y)$ is a singleton.
- Suppose $P(X), K(X \mid Y \in B)$ are "almost" vacuous in that $P(X \in A \mid \cdot)>0$ is the only constraint.
- Show that Y is epistemically irrelevant to X, but X is not epistemically irrelevant to Y.
- This is an extreme case of dilation!
- Construct an example that is not so extreme but that stills fails symmetry.

Epistemic independence

- Walley's clever idea: "symmetrize" irrelevance (this is actually a strategy by Keynes).
- X and Y are epistemically independent if Y is epistemically irrelevant to X and X is epistemically irrelevant to Y.
- Quite an intuitive concept that "generates convexity" automatically.

Kuznetsov: some interval arithmetic

- Kuznetsov (1991) proposed yet another concept.
- Actually, he uses strong independence, but proposes a new concept as a secondary idea.
- His concept is based on interval arithmetic.
- Denote by $E I[X]$ the interval $[\underline{E}[X], \bar{E}[X]]$.
- Overload the symbol \times to understand $a \times b$ as the product of two intervals when a and b are intervals:

$$
a=[\underline{a}, \bar{a}], b=[\underline{b}, \bar{b}] \quad \Rightarrow \quad a \times b=[\underline{a b}, \underline{a} \bar{b}, \bar{a} \underline{b}, \bar{a} \bar{b}] .
$$

Kuznetsov independence

- X and Y are Kuznetsov independent if, for any bounded functions $f(X)$ and $g(Y)$,

$$
E I[f(X) g(Y)]=E I[f(X)] \times E I[g(Y)]
$$

- Equivalent formulation is: for any bounded functions $f(X)$ and $g(Y)$,

$$
\begin{aligned}
& \underline{E}[f(X) g(Y)]=\inf \left(E_{P_{X} \times P_{Y}}[f(X) g(Y)]:\right. \\
& \left.\quad P_{X} \in K(X), P_{Y} \in K(Y)\right) .
\end{aligned}
$$

Exercise

Prove:

- Kuznetsov independence implies epistemic independence.
- Epistemic independence does not imply Kuznetsov independence.

Strong \neq Epistemic

- Two binary variables X and Y.
- $P(X=0) \in[2 / 5,1 / 2]$ and $P(Y=0) \in[2 / 5,1 / 2]$.
- Epistemic independence of X and $Y: K(X, Y)$ is convex hull of

$$
\begin{aligned}
& {[1 / 4,1 / 4,1 / 4,1 / 4],[4 / 25,6 / 25,6 / 25,9 / 25],} \\
& {[1 / 5,1 / 5,3 / 10,3 / 10],[1 / 5,3 / 10,1 / 5,3 / 10],} \\
& {[2 / 9,2 / 9,2 / 9,1 / 3],[2 / 11,3 / 11,3 / 11,3 / 11],}
\end{aligned}
$$

Exercise

Write down the linear constraints that must be satisfied by $K(X, Y)$ in the previous example.

Strong \neq Kuznetsov

- It would be nice if Kuznetsov and strong independence were equivalent.
- But they are not!
- (Actually, they are equivalent if one of the variables is binary.)

Example

- Ternary variables X and Y, credal sets $K(X)$ and $K(Y)$:

- Largest set that satisfies strong independence (strong extension) has 16 vertices and 24 facets; for instance, a facet with normal

$$
[-434,301,21,2836,-1154,-1734,-1164,96,1116] .
$$

- This facet cannot be written as $f(X) g(Y)+\alpha$.
- Intuitively, a Kuznetsov "extension" wraps the strong extension using only functions $f(X) g(Y)$.

A possible variant

- X and Y are "independent" if

$$
\underline{E}\left[f(X) \mid Y \in B^{\prime}\right]=\underline{E}\left[f(X) \mid Y=B^{\prime \prime}\right]
$$

for any bounded function $f(X)$ and any nonempt $\left\{Y \in B^{\prime}\right\},\left\{Y \in B^{\prime \prime}\right\}$.

- This is not epistemic irrelevance!
- It is quite weak. For instance we can have vacuous credal sets $K(X \mid Y=y)$ for every y. It seems bizarre to say that Y is then irrelevant to X.

Some history

- Several variants between 1990/2000... inspired by intense activity in Dempster-Shafer and possibility theory.
- For each possible definition of conditioning or product-measure, a concept of independence...
- Quick example: Dempster conditioning defines

$$
\bar{P}\left(\left.X\right|_{D} Y\right)=\bar{P}(X, Y) / \bar{P}(Y)
$$

then we can impose

$$
\bar{P}\left(\left.X\right|_{D} Y\right)=\bar{P}(X, Y) / \bar{P}(Y)=\bar{P}(X) .
$$

- Related (mathematically at least) to Shafer's concept of cognitive independence

de Campos and Moral, 1995

- Attempt to organize the field.
- Their type-2 independence is strong independence
- Their type-3 independence obtains when $K(X, Y)$ is the convex hull of all product distributions $P_{X} P_{Y}$, where $P_{X} \in K(X)$ and $P_{Y} \in K(Y)$.
- That is, type-3 independence is simply strong extension.
- Their type-5 independence is a variant on confirmational irrelevance.

Type-5 independence

- Y is type-5 irrelevant to X if

$$
R(X \mid Y \in B)=K(X) \quad \text { whenever } \bar{P}(Y \in B)>0
$$

where $R(X \mid Y \in B)$ denotes the set

$$
\{P(\cdot \mid Y \in B): P \in K(X, Y) ; P(Y \in B)>0\} .
$$

- Then take type-5 independence to be the "symmetrized" concept.
- The set R is often used to defined conditioning (related to what Walley calls regular extension).

Exercise

Due to de Campos and Moral (1995).

- X and Y are binary.
- $K(X, Y)$ is the convex hull of two distributions P_{1} and P_{2} such that $P_{1}(X=0, Y=0)=P_{2}(X=1, Y=1)=1$.
Show:
- X and Y are strongly independent.
- Neither Y is type-5 irrelevant to X, nor X is type-5 irrelevant to Y.

Couso et al, 1999

- In 1999 Couso et al presented an influential review.
- Their independence in the selection is strong independence.
- Their strong independence is strong extension.
- Their repetition independence refers to Walley's type-2 product.
- They also discuss non-interactivity and random set independence (called belief function product by Walley and Fine, 1982).

The zoo, so far

- Strict independence.
- Confirmational, epistemic irrelevance/independence.
- Strong independence.
- Kuznetsov independence.
- Type-5 independence.

The zoo, so far

- Strict independence.
- Confirmational, epistemic irrelevance/independence.
- Strong independence.
- Kuznetsov independence.
- Type-5 independence.

Consider:

- Epistemic independence is most intuitive (under convexity).
- Strict independence is closer to stochastic independence (without convexity).
- How to justify strong independence?

Conditional independence

- Any concept of independence can be modified to express conditional independence.
- For example, conditional epistemic irrelevance of Y to X given Z :

$$
\underline{E}[f(X) \mid Y \in B, Z=z]=\underline{E}[f(X) \mid Z=z]
$$

for all bounded functions $f(X)$ and all nonempty $\{Z=z\}$.

- Likewise for conditional Kuznetsov/strict/strong independence of X and Y given Z.
- Aside: Moral and Cano (2002) consider three related forms of conditional strict independence (closer to extensions...).

Overview

1. Some basic (mostly known) definitions: credal sets, lower expectations and probabilities, decision making, and the like.
2. Structural assessments: vacuity, uniformity, exchangeability.
3. A brief review of stochastic (conditional) independence.
4. Confirmational/strict/strong/epistemic/Kuznetsov/others independence.
5. Comparison.
6. A look into the messy world of zero probabilities.

Comparing concepts

There are perhaps too many concepts around.

- Idea: verify which concepts satisfy laws of large numbers.
- Not really discriminating: all satisfy forms of laws of large numbers (recent results by de Cooman and Miranda).
- Other idea: check graphoid properties.

Reminder: graphoid properties

Symmetry: $(X \Perp Y \mid Z) \Rightarrow(Y \Perp X \mid Z)$
Decomposition: $(X \Perp(W, Y) \mid Z) \Rightarrow(X \Perp Y \mid Z)$
Weak union: $(X \Perp(W, Y) \mid Z) \Rightarrow(X \Perp W \mid(Y, Z))$
Contraction:
$(X \Perp Y \mid Z) \&(X \Perp W \mid(Y, Z)) \Rightarrow(X \Perp(W, Y) \mid Z)$

Exercise

Show that strict and strong independence satisfy all graphoid properties.

Failure of contraction

- Epistemic independence fails contraction even when all probabilities are positive.
- Thus type-5 independence also fails contraction.
- Kuznetsov independence fails contraction even when all probabilities are positive.
- The other graphoid properties are satisfied by these concepts.

Note: there are different results when probabilities can be equal to zero!

Failure of contraction: epistemic indep.

- Binary variables W, X and Y.
- $K(W, X, Y)$ is convex hull of three distributions:

W	X	Y	$p_{1}(X, Y, W)$	$p_{2}(X, Y, W)$	$p_{3}(X, Y, W)$
W_{0}	X_{0}	Y_{0}	0.008	0.018	0.0093
W_{1}	X_{0}	Y_{0}	0.072	0.072	0.0757
W_{0}	X_{1}	Y_{0}	0.032	0.042	0.037
W_{1}	X_{1}	Y_{0}	0.288	0.168	0.228
W_{0}	X_{0}	Y_{1}	0.096	0.084	0.09
W_{1}	X_{0}	Y_{1}	0.024	0.126	0.075
W_{0}	X_{1}	Y_{1}	0.384	0.196	0.290
W_{1}	X_{1}	Y_{1}	0.096	0.294	0.195

- X and Y are epistemically independent; X and W are conditionally epistemically independent given Y.
- But X and (W, Y) are not not epistemically independent.

Failure of contraction: Kuznetsov indep.

- Binary variables W, X, and Y
- $K(W, X, Y)$ with four vertices (each is the product of $p(W \mid Y) p(Y) p(X))$:

Vertex	$p_{i}\left(w_{0} \mid y_{0}\right)$	$p_{i}\left(w_{0} \mid y_{1}\right)$	$p_{i}\left(x_{0}\right)$	$p_{i}\left(y_{0}\right)$
p_{1}	0.7	0.4	0.2	0.2
p_{2}	0.7	0.4	0.3	0.3
p_{3}	0.8	0.5	0.2	0.3
p_{4}	0.8	0.5	0.3	0.2

- X and Y are Kuznetsov independent; X and W are conditionally Kuznetsov independent given Y.
- But X and (W, Y) are not Kuznetsov independent.

Exercise

Show:

- Epistemic independence satisfies decomposition and weak union in finite spaces.
- Epistemic irrelevance satisfies: if Y is epistemically irrelevant to X and W is epistemically irrelevant to X given Y then (W, Y) are epistemically irrelevant to X.
- Kuznetsov independence satisfies decomposition.

An application: Markov chains

- Take chain $W \rightarrow X \rightarrow Y \rightarrow Z$.
- With stochastic independence, W and Z are conditionally stochastically given X (among other relations).
- But a Markov condition with epistemic independence does not guarantee such a relation.
(That is, a variable is epistemically independent of its predecessors given its parent.)

Comparing complexity

- Little is known about the computational complexity of various concepts.
- Strict/strong independence have been addressed in the context of credal networks.
- Some algorithms are known for epistemic independence.
- It seems that strict/strong independence are "more tractable" in an informal way.

The zoo, so far...

- Strict independence.
- Confirmational, epistemic irrelevance/independence.
- Strong independence.
- Kuznetsov independence (not very promising).
- Type-5 independence (only relevant with zero probabilities).

Consider:

- Epistemic independence is more intuitive (under convexity).
- Strict independence is closer to stochastic independence (without convexity).
- How to justify strong independence?

Justifying strong independence

- Sensitivity analysis interpretation: several experts agree on stochastic independence.
- This is an argument for strict independence.
- Is there a justification that uses partial preferences, lower expectations, credal sets, etc?
- A possible idea: changes in assessments (Cozman (2000), Moral and Cano (2002)).

Example

- Two binary variables X and Y.
- $P(X=0) \in[2 / 5,1 / 2]$ and $P(Y=0) \in[2 / 5,1 / 2]$.
- Epistemic independence: $K(X, Y)$ is convex hull of

$$
\begin{aligned}
& {[1 / 4,1 / 4,1 / 4,1 / 4],[4 / 25,6 / 25,6 / 25,9 / 25],} \\
& {[1 / 5,1 / 5,3 / 10,3 / 10],[1 / 5,3 / 10,1 / 5,3 / 10],} \\
& {[2 / 9,2 / 9,2 / 9,1 / 3],[2 / 11,3 / 11,3 / 11,3 / 11],}
\end{aligned}
$$

- Suppose we learn that

$$
P(Y=0)=4 / 9 .
$$

Changing assessments

- So, we have $K(X, Y)$ and we learn

$$
P(Y=0)=4 / 9 .
$$

- If we simply generate

$$
K^{\prime}(X, Y)=K(X, Y) \cap\{P: P(Y=0)=4 / 9\} .
$$

then X and Y are not epistemically independent anymore.

Producing strong independence

- This is "like" Jeffrey's rule: we change the marginal, then see what happens to the other marginal.
- Moral and Cano (2002):

Variables X and Y are [fully] strongly independent iff they are epistemically independent after $K(X, Y)$ is combined with an arbitrary collection of compatible assessments on X and on Y.

- A bit strange: after learning new assessments, shouldn't we change $K(X, Y)$ so as to preserve the epistemic independence?

Another justification: exchangeability

- Consider a vector of m exchangeable binary variables $\mathbf{X}=\left[X_{1}, \ldots, X_{m}\right]$.
- If we look at the first n variables and let $m \rightarrow \infty$, then $P\left(X_{1}=1, \ldots, X_{k}=1, X_{k+1}=0, \ldots, X_{n}=0\right)$ is

$$
\int_{0}^{1} \theta^{k}(1-\theta)^{n-k} d F(\theta)
$$

- Remember: θ is the probability of $\left\{X_{1}=1\right\}$.
- We have a convex credal set $K(\theta)$.

Strong indep. from exchangeability

- So, n variables amongst infinitely many exchangeable variables.
- Represented by a convex credal set $K(\theta)$ as

$$
P\left(X_{1, \ldots, k}=1, X_{k+1, \ldots, n}=0\right)=\int_{0}^{1} \theta^{k}(1-\theta)^{n-k} d F(\theta) .
$$

- Strong independence obtains if each vertex of $K(\theta)$ assigns probability 1 to a particular value of θ.
- We have in fact obtained a type-2 product.
- Similar argument works for general variables.
- It is possible to extend the argument to general strong independence (but a bit artificial).

Back to strict independence

- Strict independence is very attractive.
- But it violates convexity.
- It does not have a "behavioral" interpretation...
- Is it true?
- NO!
- Let's think about E-admissibility.

Example

Credal set $\left\{P_{1}, P_{2}\right\}$:

$$
\begin{array}{lll}
P_{1}\left(s_{1}\right)=1 / 8, & P_{1}\left(s_{2}\right)=3 / 4, & P_{1}\left(s_{3}\right)=1 / 8, \\
P_{2}\left(s_{1}\right)=3 / 4, & P_{2}\left(s_{2}\right)=1 / 8, & P_{2}\left(s_{3}\right)=1 / 8,
\end{array}
$$

Acts $\left\{a_{1}, a_{2}, a_{3}\right\}$:

	s_{1}	s_{2}	s_{3}
a_{1}	3	3	4
a_{2}	2.5	3.5	5
a_{3}	1	5	4.

With respect to P_{1} and P_{2}, a_{1} and a_{3} are E-admissible but a_{2} is not; with respect to the convex hull of $\left\{P_{1}, P_{2}\right\}$, all acts are E-admissible.

That is,

There is a difference between a set of distributions and its convex hull when one chooses among several acts.

Seidenfeld cuts

Three acts: $a_{1}=0.6 ; a_{2}=0 / 1$ if $A / A^{c} ; a_{3}=1 / 0$ if A / A^{c}.

We can "cut" pieces of the probability interval!

Axiomatizing partial preferences

- Can we axiomatize preferences amongst sets of acts, so as to obtain general credal sets?
- Yes. It has been done by Seidenfeld et al (2007) [it seems first idea by Kyburg and Pittarelli (1992)].
- Axioms on rejection functions: for a given set D of acts, $R(D)$ indicates the acts that are not admissible.
- Example: An inadmissible act cannot become admissible when (a) new acts are added to the set of acts; (b) inadmissible acts are deleted from the set of acts.
- And so on.

Producing strict independence

- Are events A and B are strictly independent?
- Construct five acts a_{0}, \ldots, a_{4} :

	$A B$	$A B^{c}$	$A^{c} B$	$A^{c} B^{c}$
a_{0}	0	0	0	0
a_{1}	$1-\alpha$	$-\alpha$	0	0
a_{2}	$-(1-\alpha)$	α	0	0
a_{3}	0	0	$1-\beta$	$-\beta$
a_{4}	0	0	$-(1-\beta)$	β

- Test: if we observe that for every $\alpha, \beta \in(0,1)$ such that $\alpha \neq \beta$ we have some act rejected, we can conclude that A and B are strictly independent.

Just to close

- How about confirmational independence for general credal sets?
- Very weak: fails decomposition/weak union/contraction!

	1	2	3	4
$P(X=0 \mid W=0, Y=0), P(W=0, Y=0)$	$\alpha, 1 / 4$	$\alpha, 1 / 4$	$\alpha, 1 / 4$	$\beta, \frac{\beta / 2}{\alpha+\beta}$
$P(X=0 \mid W=0, Y=1), P(W=0, Y=0)$	$\alpha, 1 / 4$	$\alpha, 1 / 4$	$\alpha, 1 / 4$	$\beta, \frac{\alpha / 2}{\alpha+\beta}$
$P(X=0 \mid W=1, Y=0), P(W=0, Y=0)$	$\alpha, \frac{\alpha / 2}{\alpha+\beta}$	$\alpha, \frac{(1-\alpha) / 2}{2-(\alpha+\beta)}$	$\alpha, 1 / 4$	$\beta, 1 / 4$
$P(X=0 \mid W=1, Y=1), P(W=0, Y=0)$	$\alpha, \frac{\beta / 2}{\alpha+\beta}$	$\alpha, \frac{(1-\beta) / 2}{2-(\alpha+\beta)}$	$\alpha, 1 / 4$	$\beta, 1 / 4$

	5	6	7
$P(X=0 \mid W=0, Y=0), P(W=0, Y=0)$	$\beta, \frac{(1-\beta) / 2}{2-(\alpha+\beta)}$	$\frac{\alpha+\beta}{2}, 1 / 4$	$\beta, 1 / 4$
$P(X=0 \mid W=0, Y=1), P(W=0, Y=0)$	$\beta, \frac{(1-\alpha) / 2}{2-(\alpha+\beta)}$	$\frac{\alpha+\beta}{2}, 1 / 4$	$\alpha, 1 / 4$
$P(X=0 \mid W=1, Y=0), P(W=0, Y=0)$	$\beta, 1 / 4$	$\alpha, 1 / 4$	$\frac{\alpha+\beta}{2}, 1 / 4$
$P(X=0 \mid W=1, Y=1), P(W=0, Y=0)$	$\beta, 1 / 4$	$\beta, 1 / 4$	$\frac{\alpha+\beta}{2}, 1 / 4$

Failure of decomposition and weak union; $\alpha, \beta \in(0,1)$.

Overview

1. Some basic (mostly known) definitions: credal sets, lower expectations and probabilities, decision making, and the like.
2. Structural assessments: vacuity, uniformity, exchangeability.
3. A brief review of stochastic (conditional) independence.
4. Confirmational/strict/strong/epistemic/Kuznetsov/others independence.
5. Comparison.
6. A look into the messy world of zero probabilities.

Potentially null events

- Events may have zero lower probability but nonzero upper probability (cannot ignore those).
- Example of difficulties one may face:
- Suppose we refuse to define a conditional credal set $K(X \mid Y=y)$ whenever $\underline{P}(Y=y)=0$.
- Consider: Y is "irrelevant" to X if

$$
K(X \mid Y \in B)=K(X) \quad \text { whenever } \underline{P}(Y \in B)>0 .
$$

- But Y may have finitely many values, and for each value y of Y there is a distribution P in $K(Y)$ such that $P(Y=y)=0$.
- Then Y is irrelevant to any other variable!

Full conditional measures

- The most elegant solution is to consider full probability measures.
- A full probability measure is a function $P(\cdot \cdot)$ on $\mathcal{E} \times \mathcal{E} \backslash \emptyset$ where \mathcal{E} is an algebra of events, such that
- $P(A \mid C)=1$;
- $P(A \mid C) \geq 0$ for all A;
- $P(A \cup B \mid C)=P(A \mid C)+P(B \mid C)$ when $A \cap B=\emptyset$;
- $P(A \cap B \mid C)=P(A \mid B \cap C) P(B \mid C)$ when $B \cap C \neq \emptyset$.
- Full probability measures allow $P(A \mid C)$ to be defined even if $P(C)=0$!

The Krauss-Dubins representation

- We can partition a Ω into events L_{0}, \ldots, L_{K}, where $K \leq N$,
- such that the full conditional measure is represented as a sequence of strictly positive probability measures P_{0}, \ldots, P_{K}, where the support of P_{i} is restricted to L_{i}.

Example:

	A	A^{c}
B	$\lfloor\beta\rfloor_{1}$	α
B^{c}	$\lfloor 1-\beta\rfloor_{1}$	$1-\alpha$

Here: $P(A)=0$, but $P(B \mid A)=\beta$.

Using full conditional measures

- Unsurprisingly, Levi and Walley both adopt full conditional measures.
- A challenge is that full conditional measures seem to call for finite additivity.
- Again, this is the path taken by Levi and Walley.

A problem with stochastic independence

- The usual product definition is now too weak!
- Consider: we may have

$$
P(X, Y=y \mid Z=z)=P(X \mid Z=z) P(Y=y \mid Z=z)
$$

and yet

$$
P(X \mid Y=y, Z=z) \neq P(X \mid Z=z)
$$

- (Failure may happen when $P(Y=y, Z=z)=0$.)

Failure of symmetry

- Take epistemic irrelevance:

$$
P(X \mid Y=y, Z=z)=P(X \mid Z=z) .
$$

- But: this is not symmetric!!

Example:

	A	A^{c}
B	$\lfloor\beta\rfloor_{1}$	α
B^{c}	$\lfloor 1-\beta\rfloor_{1}$	$1-\alpha$

Note: $P(A \mid B)=P(A)$, but $P(B \mid A) \neq P(B)$!

As before: symmetrize!

- Definition of epistemic independence: Require

$$
P(X \mid Y=y, Z=z)=P(X \mid Z=z)
$$

and

$$
P(Y \mid X=x, Z=z)=P(Y \mid Z=z) .
$$

- This is symmetric for sure.
- How does it fare with respect to the theory of graph-theoretical models?

Reminder: graphoid properties

Symmetry: $(X \Perp Y \mid Z) \Rightarrow(Y \Perp X \mid Z)$
Decomposition: $(X \Perp(W, Y) \mid Z) \Rightarrow(X \Perp Y \mid Z)$
Weak union: $(X \Perp(W, Y) \mid Z) \Rightarrow(X \Perp W \mid(Y, Z))$
Contraction:
$(X \Perp Y \mid Z) \&(X \Perp W \mid(Y, Z)) \Rightarrow(X \Perp(W, Y) \mid Z)$

Problem with epistemic independence

- It fails weak union!

	$w_{0} y_{0}$	$w_{1} y_{0}$	$w_{0} y_{1}$	$w_{1} y_{1}$
x_{0}	α	$\lfloor\beta\rfloor_{2}$	$1-\alpha$	$\lfloor 1-\beta\rfloor_{2}$
x_{1}	$\lfloor\alpha\rfloor_{1}$	$\lfloor\gamma\rfloor_{3}$	$\lfloor 1-\alpha\rfloor_{1}$	$\lfloor 1-\gamma\rfloor_{3}$

Remember:
Weak union: $(X \Perp(W, Y) \mid Z) \Rightarrow(X \Perp W \mid(Y, Z))$

Hammond's independence

- Here is a proposal for independence:

$$
\begin{gathered}
P(B(Y) \mid A(X) \cap D(Y))=P(B(Y) \mid D(Y)) \text { and } \\
P(A(X) \mid B(Y) \cap C(X))=P(A(X) \mid C(X)) .
\end{gathered}
$$

- This is symmetric.
- It satisfies weak union! But if fails contraction...

Remember:
Contraction:

$$
(X \Perp Y \mid Z) \&(X \Perp W \mid(Y, Z)) \Rightarrow(X \Perp(W, Y) \mid Z)
$$

Conclusion

- There are many different structural assessments for credal sets.
- Vacuity/uniformity/exchangeability are quite useful.
- Independence is the most important one.
- There are many different concepts of independence for credal sets.
- A study of (conditional) independence touches on
- convexity and decision-making;
- conditioning and full conditional measures.
- My humble suggestion:

We need to move to general credal sets, so that strict independence comes naturally (and many other things come naturally then...).

Conclusion

- There are many different structural assessments for credal sets.
- Vacuity/uniformity/exchangeability are quite useful.
- Independence is the most important one.
- There are many different concepts of independence for credal sets.
- A study of (conditional) independence touches on
e convexity and decision-making;
- conditioning and full conditional measures.
- My humble suggestion:

We need to move to general credal sets, so that strict independence comes naturally (and many other things come naturally then...).

Final words on independence I

- Epistemic irrelevance/independence is quite intuitive and simple to state for convex credal sets.
- Difficult to handle computationally.
- Fails the contraction property (perhaps ok?).
- Requires full conditional measures and associated challenges (perhaps then use type-5/regular independence?).

Final words on independence II

- Strict independence is simple to state and inherits all the familiar properties of stochastic independence
- Fails convexity, but this has behavioral meaning.
- Nonlinear, but this is unavoidable in the end.
- Can be adapted to full conditional measures (but need extra work).

Final words on independence III

- Strong independence: popular because people want at once convexity and stochastic independence, no matter what.
- It can be justified in some cases (exchangeability).
- But hard to justify in general.

