Independence Concepts in Imprecise Probability

Fabio G. Cozman - Universidade de Sao Paulo

fgcozman@usp.br

Independence Conceptsin Imprecise Probability - p.1/12

Or, perhaps...

Structural Assessments in the Theory of Credal Sets

Overview

- 1. A review of some basic definitions: credal sets, lower expectations and probabilities, decision making, and the like.
- 2. Structural assessments: vacuity, uniformity, exchangeability.
- 3. A brief review of stochastic (conditional) independence.
- 4. Confirmational/strict/strong/epistemic/Kuznetsov/others independence.
- 5. Comparison.
- 6. A look into the messy world of zero probabilities.

Easy warm-up

- Possibility space Ω with states ω ; events are subsets of Ω .
- Random variables and indicator functions.
 - Bounded function $X : \Omega \to \Re$.
 - Special type: indicator function of event A:
 - Denoted by A as well.
 - $A(\omega) = 1$ if $\omega \in A$; 0 otherwise.

Buying/selling variables

- Buy X for α : $X \alpha$.
- **Sell** X for β : βX .
- Must satisfy: $\beta > \alpha$.

- Pay less than $\underline{E}[X]$.
- Sell for more than $\overline{E}[X]$.

Fair prices

- Suppose that $\underline{E}[X] = \overline{E}[X]$ for some X.
- Then $E[X] \doteq \underline{E}[X]$ is the fair price of X.

- What if all variables had fair prices?
- What would the resulting expectation functional satisfy?

Axioms for expectations

EU1 If $\alpha \leq X \leq \beta$, then $\alpha \leq E[X] \leq \beta$. EU2 E[X+Y] = E[X] + E[Y].

Axioms for expectations

EU1 If $\alpha \leq X \leq \beta$, then $\alpha \leq E[X] \leq \beta$. EU2 E[X+Y] = E[X] + E[Y].

Some consequences:

1. $X \ge Y \Rightarrow E[X] \ge E[Y]$. 2. $E[\alpha X] = \alpha X$.

Supremum buying/infimum selling prices

- If one holds a set of expectations for X: willing to pay up to $\inf E[X]$ for X.
- Likewise: willing to sell X for more than $\sup E[X]$.

So, naturally:

 $\underline{E}[X] = \inf E[X]$ (lower expectation), $\overline{E}[X] = \sup E[X]$ (upper expectation).

Familiar properties

- $\underline{E}[X] \ge \inf X;$
- $\underline{E}[\alpha X] = \alpha \underline{E}[X]$ for $\alpha \ge 0$;
- $\underline{E}[X+Y] \ge \underline{E}[X] + \underline{E}[Y].$

Probabilities

Expectation E[A] indicates how much we expect A to "happen."

Definition: The *probability* P(A) is E[A].

Properties of a probability measure:
PU1 $P(A) \ge 0$.
PU2 $P(\Omega) = 1$.
PU3 If $A \cap B = \emptyset$, $P(A \cup B) = P(A) + P(B)$.

Conditional expectations/probabilities

• Conditional expectation of X given B,

$$E[X|B] = \frac{E[BX]}{P(B)} \quad \text{ if } P(B) > 0.$$

• Bayes rule: If P(B) > 0, then

$$P(A|B) = \frac{P(A \cap B)}{P(B)}.$$

Credal sets

- A credal set is a set of probability measures (distributions).
- A credal set is usually defined by a set of assessments.

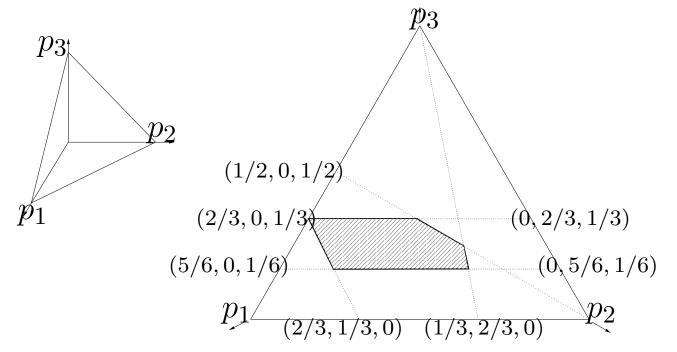
Example:

- **1.** $\Omega = \{\omega_1, \omega_2, \omega_3\}.$
- **2.** $P(\omega_i) = p_i$.
- **3.** $p_1 > p_3$, $2p_1 \ge p_2$, $p_1 \le 2/3$ and $p_3 \in [1/6, 1/3]$.
- 4. Take points $P = (p_1, p_2, p_3)$.

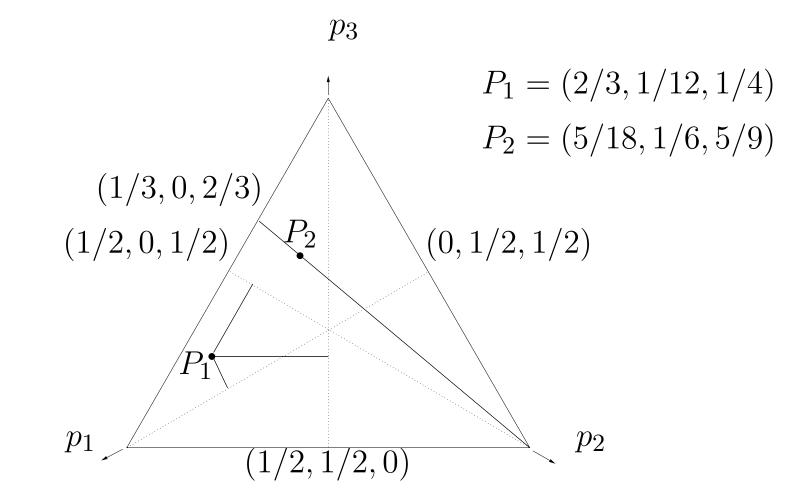
Some geometry

1.
$$\Omega = \{\omega_1, \omega_2, \omega_3\}$$
.
2. $P(\omega_i) = p_i$.
3. $p_1 > p_3$, $2p_1 \ge p_2$, $p_1 \le 2/3$ and $p_3 \in [1/6, 1/3]$
4. Take points $P = (p_1, p_2, p_3)$.

C



Baricentric coordinates



The coordinates of a distribution are read on the lines bissecting the angles of the triangle.

Consider a variable X with 3 possible values x_1 , x_2 and x_3 . Suppose the following assessments are given:

> $p(x_1) \le p(x_2) \le p(x_3);$ $p(x_i) \ge 1/20 \quad \text{for } i \in \{1, 2, 3\};$ $p(x_3 | x_2 \cup x_3) \le 3/4.$

Show the credal set determined by these assessments in baricentric coordinates.

Back to credal sets

- Credal set with distributions for X is denoted K(X).
- Given credal set K(X):
 - $\underline{E}[X] = \inf_{P \in K(X)} E_P[X].$
 - $\overline{E}[X] = \sup_{P \in K(X)} E_P[X].$
- For closed convex credal sets, lower and upper expectations are attained at vertices.
- A closed convex credal set is completely characterized by the associated lower expectation.
 - That is, there is only one lower expectation for a given closed convex credal set.

A closed convex credal set is completely characterized by the associated lower expectation.

- But given a lower expectation, many credal sets generate it.
- Usually only the maximal closed convex set is chosen.

Exercise: Given the assessments in the previous exercise, find two credal sets that yield the same lower expectation.

Common ways to generate credal sets I

From partial preferences:

- $X \succ Y$ means "X is preferred to Y."
- Axiomatize \succ as partial order.

Then:

 $X \succ Y$ iff $E_P[X] > E_P[Y]$ for all $P \in K$.

- Credal sets with identical vertices produce the same \succ .
- Focus has been on unique maximal credal set that represents ≻.
 - Smaller credal sets have no "behavioral" significance.

Common ways to generate credal sets II

From one-sided betting:

- Variables are gambles.
- Buy/sell gambles using $\underline{E}[X]$ and $\overline{E}[X]$.
- Some constraints, such as $\sum_{i=1}^{n} \alpha_i (X_i - \underline{E}[X_i]) \ge 0 \text{ for } \alpha_i \ge 0.$
- Credal set is produced by the set of *dominating* expectations:

 $\{E: E[X] \ge \underline{E}[X]\}.$

- Several credal sets produce the same lower expectations.
 - But only maximal closed one is given "behavioral" significance.

Decision making with credal sets

- Set of acts \mathcal{A} , need to choose one.
 - There are several criteria!
- Γ-minimax:

$$\arg \max_{X \in \mathcal{A}} \underline{E}[X] \,.$$

Maximality: maximal elements of the partial order \succ .
That is, X is maximal if

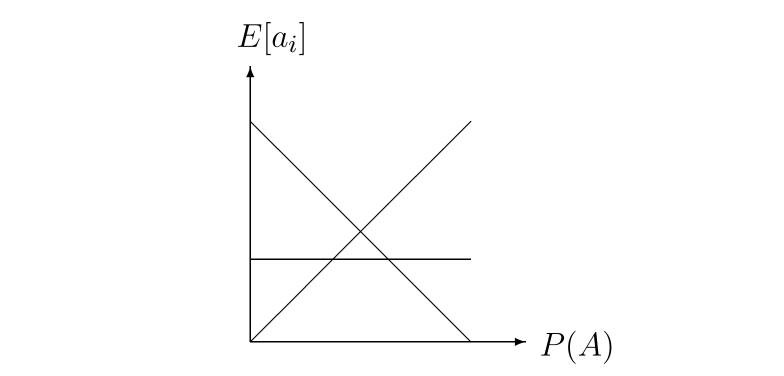
there is no $Y \in \mathcal{A}$ such that $E_P[Y - X] > 0$ for all $P \in K$.

E-admissibility: maximality for at least a distribution. That is, X is E-admissible if

there is $P \in K$ such that $E_P[X - Y] \ge 0$ for all $Y \in \mathcal{A}$.

Comparing criteria

Three acts: $a_1 = 0.4$; $a_2 = 0/1$ if A/A^c ; $a_3 = 1/0$ if A/A^c .



 $P(A) \in [0.3, 0.7].$

 Γ -minimax: a_1 ; Maximal: all of them; E-admissible: $\{a_2, a_3\}$.

Credal set $\{P_1, P_2\}$: $P_1(s_1) = 1/8$, $P_1(s_2) = 3/4$, $P_1(s_3) = 1/8$, $P_2(s_1) = 3/4$, $P_2(s_2) = 1/8$, $P_2(s_3) = 1/8$, Acts $\{a_1, a_2, a_3\}$:

	s_1	s_2	s_3
a_1	3	3	4
a_2	2.5	3.5	5
a_3	1	5	4.

Which one to select? And if we take convex hull of credal set?

Overview

- 1. Some basic (mostly known) definitions: credal sets, lower expectations and probabilities, decision making, and the like.
- 2. Structural assessments: vacuity, uniformity, exchangeability.
- 3. A brief review of stochastic (conditional) independence.
- 4. Confirmational/strict/strong/epistemic/Kuznetsov/others independence.
- 5. Comparison.
- 6. A look into the messy world of zero probabilities.

Structural assessments

- What is it?
- An assessment that alone constrains a large (possibly infinite) number of expectations.
- A simple example: vacuity.
- A credal set K(X) is vacuous when it contains every possible distribution for X.

Vacuity

• Suppose K(X) is vacuous.

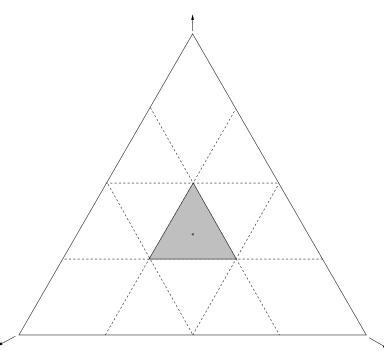
Then:

$$\underline{E}[f(X)] = \min_{\omega \in \Omega} f(X(\omega)), \qquad \overline{E}[f(X)] = \max_{\omega \in \Omega} f(X(\omega)).$$

$$(1-\epsilon)P_0+\epsilon Q$$
, any Q .

Uniformity

- **•** Every ω is subject to identical assessments.
- Extreme case: vacuity.
- Extreme case: uniform distribution.
- Intermediate case: $P(\omega_i) \in [1/4, 1/2]$.



- Urn with m > 0 balls, numbered from 1 to m
- r balls are red and m r balls are black.
- *n* samples with replacement.
- \bullet is a numbered sequence produced this way.
- m^n possible numbered sequences.
- Assume uniformity: $P(\omega) \ge (1 \epsilon)m^{-n}$.
- What is the lower probability that k balls are red?

Exchangeability

- A basic structural assessment.
- To simplify, take categorical variables $\mathbf{X} = [X_1, \ldots, X_m]$.

Denote by π_m a permutation of integers $\{1, \ldots, m\}$, and by $\pi_m(i)$ the *i*th number in the permutation.

Denote

$$\{\mathbf{X} = \mathbf{x}\} \doteq \bigcap_{i=1}^m \{X_i = x_i\},\$$

and

$$\{\pi_m \mathbf{X} = \mathbf{x}\} \doteq \bigcap_{i=1}^m \{X_{\pi_m(i)} = x_i\}.$$

Definition of exchangeability

• Variables X_1, \ldots, X_m are *exchangeable* when

$$\underline{E}[\{\mathbf{X} = \mathbf{x}\} - \{\pi_m \mathbf{X} = \mathbf{x}\}] = 0$$

for any permutation π_m .

• That is, the order of variables does not matter: trading $\{X = x\}$ for $\{\pi_m X = x\}$ does not seem advantageous.

Walley's exchangeability theorem

We have

$$0 = \underline{E}[\{\mathbf{X} = \mathbf{x}\} - \{\pi_m \mathbf{X} = \mathbf{x}\}]$$

$$\leq \overline{E}[\{\mathbf{X} = \mathbf{x}\} - \{\pi_m \mathbf{X} = \mathbf{x}\}]$$

$$= -\underline{E}[\{\pi_m \mathbf{X} = \mathbf{x}\} - \{\mathbf{X} = \mathbf{x}\}] = 0.$$

Hence every distribution in the credal set $K(X_1, \ldots, X_m)$ satisfies

 $P(\mathbf{X} = \mathbf{x}) = P(\pi_m \mathbf{X} = \mathbf{x})$ for any permutation π_m .

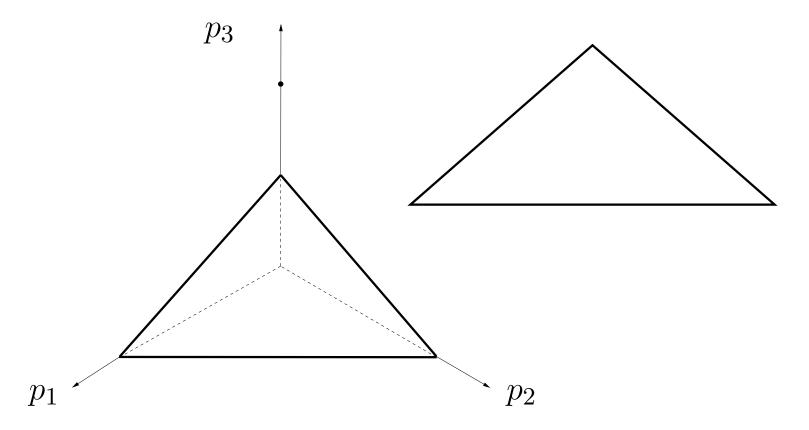
In words: Exchangeability implies elementwise exchangeability.

What is the largest credal set that satisfies exchangeability of two binary variables?

What is the largest credal set that satisfies exchangeability of two binary variables?

$$p_1 = P(X = 0, Y = 0), p_2 = P(X = 1, Y = 1),$$

 $p_3 = P(X = 1, Y = 0) = P(X = 0, Y = 1).$



- Suppose we have 4 binary variables that are exchangeable.
- What are the conditions on the probabilities $P(X_1 = x_1, X_2 = x_2, X_3 = x_3, X_4 = x_4)$?

- Suppose we have 4 binary variables that are exchangeable.
- What are the conditions on the probabilities $P(X_1 = x_1, X_2 = x_2, X_3 = x_3, X_4 = x_4)$?

Here they are:

- One success: P(0001) = P(0010) = P(0100) = P(1000).
- Two successes: P(1001) = P(1010) = P(1100) = P(0101) = P(0110) = P(0110) = P(0011).
- Three successes: P(1110) = P(1101) = P(1011) = P(0111).

- Suppose we have 4 binary variables that are exchangeable.
- **Suppose** P(0000) = 1/10 and P(1111) = 1/2.
- Draw the credal set.

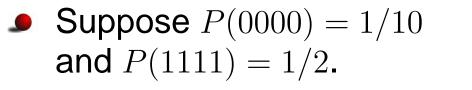
Exercise

- Suppose we have 4 binary variables that are exchangeable.
- **Suppose** P(0000) = 1/10 and P(1111) = 1/2.
- Draw the credal set.

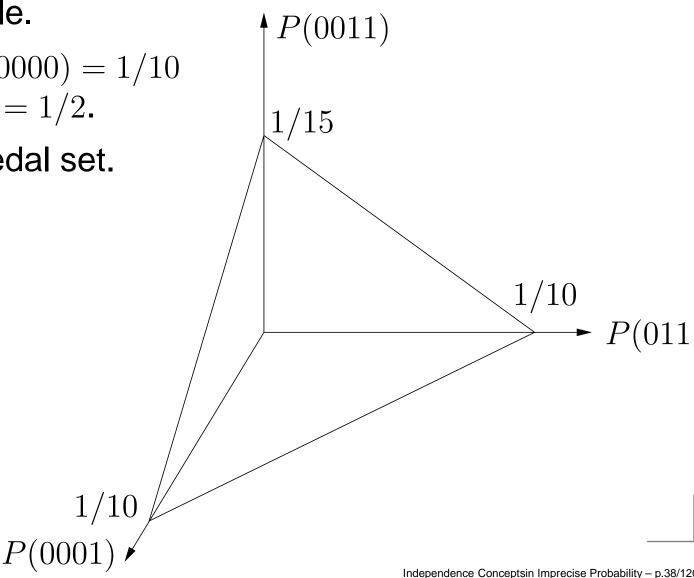
Set of triplets [P(0001), P(0011), P(0111)] satisfying $P(0001) \ge 0, \quad P(0011) \ge 0, \quad P(0111) \ge 0,$ 4P(0001) + 6P(0011) + 4P(0111) = 1 - (1/2 + 1/10) = 2/5.

Exercise

Suppose we have 4 binary variables that are exchangeable.



Draw the credal set.



Facts about exchangeability

- Any subset of exchangeable variables is exchangeable.
- Exchangeability is a "convex" concept.
- For X_1, \ldots, X_m , what matters is

$$P\left(\sum_{i=1}^{m} X_i = r\right).$$

• For each
$$r$$
, $\begin{pmatrix} m \\ r \end{pmatrix}$ probabilities with identical value

$$\frac{P\left(\sum_{i=1}^{n} X_i = r\right)}{\binom{m}{r}}.$$

Representation for binary variables

- Consider *m* exchangeable variables, and take initial *n* variables.
- Then $P(X_1 = 1, ..., X_k = 1, X_{k+1} = 0, ..., X_n = 0)$ is equal to

$$\sum_{r=k}^{m-n+k} \frac{\binom{m-n}{r-k}}{\binom{m}{r}} P\left(\sum_{i=1}^{n} X_i = r\right)$$

de Finetti's theorem (binary variables)

• Take $m \to \infty$: Then $P(X_1 = 1, \dots, X_k = 1, X_{k+1} = 0, \dots, X_n = 0)$ is equal to

$$\int_0^1 \theta^k (1-\theta)^{n-k} dF(\theta).$$

- Here θ is the probability of $\{X_1 = 1\}$, and the distribution function $F(\theta)$ acts as a "prior" over θ .
- So: we have a credal set $K(\theta)$.
- Moreover: this credal set is convex!

Exercise

Draw the credal set K(X, Y) given the structural assessments:

- X and Y are exchangeable.
- X and Y are the first two variables in a sequence of three exchangeable variables.
- X and Y are the first two variables in a sequence of five exchangeable variables.
- X and Y are the first two variables in a sequence of infinitely many exchangeable variables.

Overview

- Some basic (mostly known) definitions: credal sets, lower expectations and probabilities, decision making, and the like.
- 2. Structural assessments: vacuity, uniformity, exchangeability.
- 3. A brief review of stochastic (conditional) independence.
- 4. Confirmational/strict/strong/epistemic/Kuznetsov/others independence.
- 5. Comparison.
- 6. A look into the messy world of zero probabilities.

Now, stochastic independence

1. X is stochatically irrelevant to Y when:

```
E[f(Y)|\{X \in A\}] = E[f(Y)]
```

for any bounded function f, whenever $P({X \in A}) > 0$.

- 2. Definition is symmetric!
- 3. So, take it to mean *stochastic independence* of *X* and *Y*.

Symmetry

1. X is irrelevant to Y iff

 $P(\{Y \in B\} | \{X \in A\}) = P(\{Y \in B\})$

whenever $P(\{X \in A\}) > 0$.

2. X is irrelevant to Y iff

 $P(\{Y \in B\} \cap \{X \in A\}) = P(\{Y \in B\}) P(\{X \in A\}).$

Complete definition

Variables $\{X_i\}_{i=1}^n$ are *independent* if

$$E[f_i(X_i)| \cap_{j \neq i} \{X_j \in A_j\}] = E[f_i(X_i)],$$

for

- all functions $f_i(X_i)$
- all events $\cap_{j \neq i} \{X_j \in A_j\}$ with positive probability.

Other forms

Independence of variables $\{X_i\}_{i=1}^n$ is equivalent to:

• For all functions $f_i(X_i)$,

$$E\left[\prod_{i=1}^{n} f_i(X_i)\right] = \prod_{i=1}^{n} E[f_i(X_i)].$$

• For all sets of events $\{A_i\}_{i=1}^n$,

$$P(\bigcap_{i=1}^{n} \{X_i \in A_i\}) = \prod_{i=1}^{n} P(\{X_i \in A_i\}).$$

Independence for events

1. *A* and *B* are independent

P(A|B) = P(A) whenever P(B) > 0;

or, equivalently,

$$P(A \cap B) = P(A) P(B) \,.$$

2. For all subsets of events $\{A_i\}_{i=1}^n$,

$$P(\cap_i \{X_i \in A_i\}) = \prod_i P(\{X_i \in A_i\})$$

Weak law of large numbers

1. Remember Chebyshev inequality:

$$P(|X - E[X]| \ge t) \le \frac{V[X]}{t^2},$$

2. Apply inequality to $\bar{X} = \sum_i X_i/n$:

$$P(|\bar{X} - \mu| \ge \epsilon) \le \frac{\sigma^2}{n\epsilon^2},$$

3. The larger the n, the smaller this probability!

$$\forall \epsilon > 0, \quad \lim_{n \to \infty} P(|\bar{X} - \mu| \ge \epsilon) = 0$$

4. There are other versions with different assumptions.

(Finite) strong law of large numbers

- Finitistic version:
 - for all $\epsilon > 0$,
 - \bullet there is integer N
 - such that for every positive integer k,

$$P\left(\exists n \in [N, N+k] : \left|\frac{\sum_{i=1}^{n} X_i}{n} - \mu\right| > \epsilon\right) < \epsilon.$$

Strong law of large numbers

In a sequence of variables X_1, \ldots, X_n , the mean converges to the expectation with probability one:

$$P\left(\lim_{n \to \infty} \frac{\sum_{i=1}^{n} X_i}{n} = \mu\right) = 1.$$

1. It requires countable additivity; that is,

$$P(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{\infty} P(A_i).$$

2. It is really a strong result.

The graphoid properties

Proposed as a way to encode the intuitive meaning of "independence":

Symmetry: $(X \perp\!\!\!\perp Y \mid Z) \Rightarrow (Y \perp\!\!\!\perp X \mid Z)$ Decomposition: $(X \perp\!\!\!\perp (W, Y) \mid Z) \Rightarrow (X \perp\!\!\!\perp Y \mid Z)$ Weak union: $(X \perp\!\!\!\perp (W, Y) \mid Z) \Rightarrow (X \perp\!\!\!\perp W \mid (Y, Z))$ Contraction: $(X \perp\!\!\!\perp Y \mid Z) \& (X \perp\!\!\!\perp W \mid (Y, Z)) \Rightarrow (X \perp\!\!\!\perp (W, Y) \mid Z)$

Satisfied by many structures (graphs, lattices, etc).

Other graphoid properties

Often added:

```
Redundancy: (X \perp\!\!\!\perp Y \mid X)
```

Often added (true when probabilities are positive):

Intersection

 $(X \perp\!\!\!\perp W \mid (Y, Z)) \& (X \perp\!\!\!\perp Y \mid (W, Z)) \Rightarrow (X \perp\!\!\!\perp (W, Y) \mid Z)$

Not discussed further in this talk.

Prove decomposition, weak union and contraction for stochastic independence.

Overview

- 1. Some basic (mostly known) definitions: credal sets, lower expectations and probabilities, decision making, and the like.
- 2. Structural assessments: vacuity, uniformity, exchangeability.
- 3. A brief review of stochastic (conditional) independence.
- 4. Confirmational/strict/strong/epistemic/Kuznetsov/others independence.
- 5. Comparison.
- 6. A look into the messy world of zero probabilities.

Strict independence

• X and Y are strictly independent if for all $P \in K(X, Y)$, $P(X \in A | Y \in B) = P(X \in A)$ whenever $P(Y \in B) > 0$.

That is, elementwise stochastic independence.

This concept violates convexity (presumably has no "behavioral" justification).

Failure of convexity

Example of Jeffrey's:

- **•** Binary variables X and Y, strictly independent.
- K(X,Y): convex hull of P_1 and P_2 ,

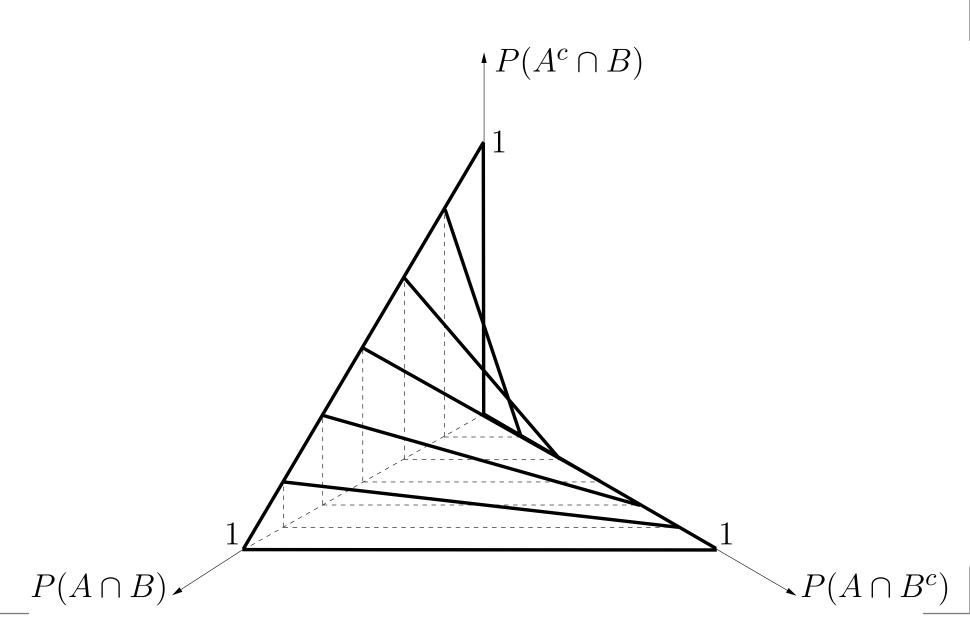
 $P_1(X=0) = P_1(Y=0) = 1/3, P_2(X=0) = P_2(Y=0) = 2/4$

• Take $P_{1/2} = P_1/2 + P_2/2$ (by convexity, $P_{1/2} \in K(X, Y)$).

However,

$$P_{1/2}(X = 0, Y = 0) = P_1(X = 0)P_1(Y = 0)/2 + P_2(X = 0)P_1(Y = 0)/2 = 5/18 \neq 1/4 = P_{1/2}(X = 0)P_{1/2}(Y = 0).$$

Independence surface for two events



Confirmational independence

I. Levi, the pioneer on convex credal sets, detected this problem with strict independence.

His proposal: Y is confirmationally irrelevant to X if

 $K(X|Y \in B) = K(X)$ for nonempty $\{Y \in B\}$,

His position: use strict independence if needed, but take convex hull (does not affect partial preferences...).

Strong independence

• X and Y are strongly independent when K(X, Y) is the convex hull of a set of distributions satisfying strict independence.

Equivalently (for closed credal sets): X and Y are strongly independent iff for any bounded function f(X,Y),

 $\underline{E}[f(X,Y)] = \min\left(E_P[f(X,Y)]: P = P_X P_Y\right).$

Type-1/2 products and others

Walley and Fine (1982) called this expression an independent product when restricted to indicators:

 $\underline{E}[A(X,Y)] = \min\left(E_P[A(X,Y)]: P = P_X P_Y\right).$

- This is Weichselberger's definition of mutual independence.
- In his book, Walley (1991) called the general expression a type-1 product.
- ...and type-2 products refer to the case of identical marginals.

Epistemic irrelevance

Walley also proposes a different concept: Y is epistemically irrelevant to X if for any bounded function f(X),

 $\underline{E}[f(X)|Y \in B] = \underline{E}[f(X)] \quad \text{for nonempty } \{Y \in B\}.$

- Definition is what Smith refers to as independence in his pioneering work on medial odds.
- If credal sets are closed and convex, then epistemic irrelevance is identical to Levi's confirmational irrelevance.

Exercise

- Consider a finite possibility space.
- Suppose K(Y) is a singleton.
- Suppose P(X), $K(X|Y \in B)$ are "almost" vacuous in that $P(X \in A|\cdot) > 0$ is the only constraint.
- Show that Y is epistemically irrelevant to X, but X is not epistemically irrelevant to Y.
- This is an extreme case of *dilation*!
- Construct an example that is not so extreme but that stills fails symmetry.

Epistemic independence

- Walley's clever idea: "symmetrize" irrelevance (this is actually a strategy by Keynes).
- X and Y are epistemically independent if Y is epistemically irrelevant to X and X is epistemically irrelevant to Y.
- Quite an intuitive concept that "generates convexity" automatically.

Kuznetsov: some interval arithmetic

- Kuznetsov (1991) proposed yet another concept.
- Actually, he uses strong independence, but proposes a new concept as a secondary idea.
- His concept is based on interval arithmetic.
- Denote by EI[X] the interval $[\underline{E}[X], \overline{E}[X]]$.
- Overload the symbol × to understand a × b as the product of two intervals when a and b are intervals:

$$a = [\underline{a}, \overline{a}], b = [\underline{b}, \overline{b}] \implies a \times b = [\underline{ab}, \underline{a}\overline{b}, \overline{a}\overline{b}, \overline{a}\overline{b}].$$

Kuznetsov independence

• X and Y are *Kuznetsov independent* if, for any bounded functions f(X) and g(Y),

 $EI[f(X)g(Y)] = EI[f(X)] \times EI[g(Y)].$

• Equivalent formulation is: for any bounded functions f(X) and g(Y),

$$\underline{E}[f(X)g(Y)] = \inf(E_{P_X \times P_Y}[f(X)g(Y)]:$$
$$P_X \in K(X), P_Y \in K(Y)).$$

Exercise

Prove:

- Kuznetsov independence implies epistemic independence.
- Epistemic independence does not imply Kuznetsov independence.

Strong \neq **Epistemic**

- Two binary variables X and Y.
- $P(X = 0) \in [2/5, 1/2]$ and $P(Y = 0) \in [2/5, 1/2]$.
- Epistemic independence of X and Y: K(X, Y) is convex hull of

[1/4, 1/4, 1/4, 1/4], [4/25, 6/25, 6/25, 9/25],[1/5, 1/5, 3/10, 3/10], [1/5, 3/10, 1/5, 3/10],[2/9, 2/9, 2/9, 1/3], [2/11, 3/11, 3/11],

Write down the linear constraints that must be satisfied by K(X, Y) in the previous example.

$Strong \neq Kuznetsov$

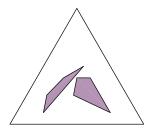
It would be nice if Kuznetsov and strong independence were equivalent.

But they are not!

(Actually, they are equivalent if one of the variables is binary.)

Example

• Ternary variables X and Y, credal sets K(X) and K(Y):



Largest set that satisfies strong independence (strong extension) has 16 vertices and 24 facets; for instance, a facet with normal

[-434, 301, 21, 2836, -1154, -1734, -1164, 96, 1116].

- This facet cannot be written as $f(X)g(Y) + \alpha$.
- Intuitively, a Kuznetsov "extension" wraps the strong extension using only functions f(X)g(Y).

A possible variant

• X and Y are "independent" if

$$\underline{E}[f(X)|Y \in B'] = \underline{E}[f(X)|Y = B'']$$

for any bounded function f(X) and any nonempt $\{Y \in B'\}, \{Y \in B''\}.$

- This is not epistemic irrelevance!
- It is quite weak. For instance we can have vacuous credal sets K(X|Y = y) for every y. It seems bizarre to say that Y is then irrelevant to X.

Some history

- Several variants between 1990/2000... inspired by intense activity in Dempster-Shafer and possibility theory.
- For each possible definition of conditioning or product-measure, a concept of independence...
 - Quick example: Dempster conditioning defines

$$\overline{P}(X|_D Y) = \overline{P}(X,Y) / \overline{P}(Y)$$

then we can impose

$$\overline{P}(X|_D Y) = \overline{P}(X,Y) / \overline{P}(Y) = \overline{P}(X) .$$

 Related (mathematically at least) to Shafer's concept of cognitive independence

de Campos and Moral, 1995

- Attempt to organize the field.
- Their type-2 independence is strong independence
- Their *type-3* independence obtains when K(X, Y) is the convex hull of *all* product distributions $P_X P_Y$, where $P_X \in K(X)$ and $P_Y \in K(Y)$.
 - That is, type-3 independence is simply strong extension.
- Their type-5 independence is a variant on confirmational irrelevance.

Type-5 independence

• Y is type-5 irrelevant to X if

 $R(X|Y \in B) = K(X)$ whenever $\overline{P}(Y \in B) > 0$,

where $R(X|Y \in B)$ denotes the set

 $\{P(\cdot|Y \in B) : P \in K(X,Y) ; P(Y \in B) > 0\}.$

- Then take type-5 independence to be the "symmetrized" concept.
- The set R is often used to defined conditioning (related to what Walley calls regular extension).

Exercise

Due to de Campos and Moral (1995).

- X and Y are binary.
- K(X, Y) is the convex hull of two distributions P_1 and P_2 such that $P_1(X = 0, Y = 0) = P_2(X = 1, Y = 1) = 1$.

Show:

- X and Y are strongly independent.
- Neither Y is type-5 irrelevant to X, nor X is type-5 irrelevant to Y.

Couso et al, 1999

- In 1999 Couso et al presented an influential review.
 - Their independence in the selection is strong independence.
 - Their strong independence is strong extension.
 - Their repetition independence refers to Walley's type-2 product.

They also discuss non-interactivity and random set independence (called belief function product by Walley and Fine, 1982).

The zoo, so far

- Strict independence.
- Confirmational, epistemic irrelevance/independence.
- Strong independence.
- Kuznetsov independence.
- Type-5 independence.

The zoo, so far

- Strict independence.
- Confirmational, epistemic irrelevance/independence.
- Strong independence.
- Kuznetsov independence.
- Type-5 independence.

Consider:

- Epistemic independence is most intuitive (under convexity).
- Strict independence is closer to stochastic independence (without convexity).
- How to justify strong independence?

Conditional independence

- Any concept of independence can be modified to express conditional independence.
- For example, conditional epistemic irrelevance of Y to X given Z:

 $\underline{E}[f(X)|Y \in B, Z = z] = \underline{E}[f(X)|Z = z]$

for all bounded functions f(X) and all nonempty $\{Z = z\}$.

- Likewise for conditional Kuznetsov/strict/strong independence of X and Y given Z.
- Aside: Moral and Cano (2002) consider three related forms of conditional strict independence (closer to extensions...).

Overview

- Some basic (mostly known) definitions: credal sets, lower expectations and probabilities, decision making, and the like.
- 2. Structural assessments: vacuity, uniformity, exchangeability.
- 3. A brief review of stochastic (conditional) independence.
- 4. Confirmational/strict/strong/epistemic/Kuznetsov/others independence.
- 5. Comparison.
- 6. A look into the messy world of zero probabilities.

Comparing concepts

There are perhaps too many concepts around.

- Idea: verify which concepts satisfy laws of large numbers.
 - Not really discriminating: all satisfy forms of laws of large numbers (recent results by de Cooman and Miranda).
- Other idea: check graphoid properties.

Reminder: graphoid properties

Symmetry: $(X \perp\!\!\!\perp Y \mid\!\! Z) \Rightarrow (Y \perp\!\!\!\perp X \mid\!\! Z)$ Decomposition: $(X \perp\!\!\!\perp (W, Y) \mid\!\! Z) \Rightarrow (X \perp\!\!\!\perp Y \mid\!\! Z)$ Weak union: $(X \perp\!\!\!\perp (W, Y) \mid\!\! Z) \Rightarrow (X \perp\!\!\!\perp W \mid\!\! (Y, Z))$

Contraction:

 $(X \perp\!\!\!\perp Y \mid Z) \And (X \perp\!\!\!\perp W \mid (Y, Z)) \Rightarrow (X \perp\!\!\!\perp (W, Y) \mid Z)$

Show that strict and strong independence satisfy all graphoid properties.

Failure of contraction

- Epistemic independence fails contraction even when all probabilities are positive.
 - Thus type-5 independence also fails contraction.
- Kuznetsov independence fails contraction even when all probabilities are positive.
- The other graphoid properties are satisfied by these concepts.

Note: there are different results when probabilities can be equal to zero!

Failure of contraction: epistemic indep.

- Binary variables W, X and Y.
- K(W, X, Y) is convex hull of three distributions:

W	X	Y	$p_1(X, Y, W)$	$p_2(X, Y, W)$	$p_3(X, Y, W)$
W_0	X_0	Y_0	0.008	0.018	0.0093
W_1	X_0	Y_0	0.072	0.072	0.0757
W_0	X_1	Y_0	0.032	0.042	0.037
W_1	X_1	Y_0	0.288	0.168	0.228
W_0	X_0	Y_1	0.096	0.084	0.09
W_1	X_0	Y_1	0.024	0.126	0.075
W_0	X_1	Y_1	0.384	0.196	0.290
W_1	X_1	Y_1	0.096	0.294	0.195

- X and Y are epistemically independent; X and W are conditionally epistemically independent given Y.
- But X and (W, Y) are not not epistemically independent.

Failure of contraction: Kuznetsov indep.

- Binary variables W, X, and Y
- K(W, X, Y) with four vertices (each is the product of p(W|Y) p(Y) p(X)):

Vertex	$p_i(w_0 y_0)$	$p_i(w_0 y_1)$	$p_i(x_0)$	$p_i(y_0)$
p_1	0.7	0.4	0.2	0.2
p_2	0.7	0.4	0.3	0.3
p_3	0.8	0.5	0.2	0.3
p_4	0.8	0.5	0.3	0.2

- X and Y are Kuznetsov independent; X and W are conditionally Kuznetsov independent given Y.
- **•** But X and (W, Y) are not Kuznetsov independent.

Exercise

Show:

- Epistemic independence satisfies decomposition and weak union in finite spaces.
- Epistemic irrelevance satisfies: if Y is epistemically irrelevant to X and W is epistemically irrelevant to X given Y then (W,Y) are epistemically irrelevant to X.
- Kuznetsov independence satisfies decomposition.

An application: Markov chains

- Take chain $W \to X \to Y \to Z$.
- With stochastic independence, W and Z are conditionally stochastically given X (among other relations).
- But a Markov condition with epistemic independence does not guarantee such a relation.

(That is, a variable is epistemically independent of its predecessors given its parent.)

Comparing complexity

- Little is known about the computational complexity of various concepts.
- Strict/strong independence have been addressed in the context of credal networks.
- Some algorithms are known for epistemic independence.
- It seems that strict/strong independence are "more tractable" in an informal way.

The zoo, so far...

- Strict independence.
- Confirmational, epistemic irrelevance/independence.
- Strong independence.
- Kuznetsov independence (not very promising).
- Type-5 independence (only relevant with zero probabilities).

Consider:

- Epistemic independence is more intuitive (under convexity).
- Strict independence is closer to stochastic independence (without convexity).
- How to justify strong independence?

Justifying strong independence

- Sensitivity analysis interpretation: several experts agree on stochastic independence.
 - This is an argument for strict independence.

Is there a justification that uses partial preferences, lower expectations, credal sets, etc?

A possible idea: changes in assessments (Cozman (2000), Moral and Cano (2002)).

Example

- Two binary variables X and Y.
- $P(X = 0) \in [2/5, 1/2]$ and $P(Y = 0) \in [2/5, 1/2]$.
- Epistemic independence: K(X, Y) is convex hull of

[1/4, 1/4, 1/4], [4/25, 6/25, 6/25, 9/25],

[1/5, 1/5, 3/10, 3/10], [1/5, 3/10, 1/5, 3/10],[2/9, 2/9, 2/9, 1/3], [2/11, 3/11, 3/11, 3/11],

Suppose we learn that

$$P(Y=0) = 4/9.$$

Changing assessments

So, we have K(X, Y) and we learn

$$P(Y = 0) = 4/9.$$

If we simply generate

$$K'(X,Y) = K(X,Y) \cap \{P : P(Y=0) = 4/9\}.$$

then X and Y are not epistemically independent anymore.

Producing strong independence

- This is "like" Jeffrey's rule: we change the marginal, then see what happens to the other marginal.
- Moral and Cano (2002):

Variables X and Y are [fully] strongly independent iff they are epistemically independent after K(X, Y) is combined with an arbitrary collection of compatible assessments on X and on Y.

• A bit strange: after learning new assessments, shouldn't we change K(X, Y) so as to preserve the epistemic independence?

Another justification: exchangeability

- Consider a vector of m exchangeable binary variables $\mathbf{X} = [X_1, \dots, X_m]$.
- If we look at the first *n* variables and let $m \to \infty$, then $P(X_1 = 1, \dots, X_k = 1, X_{k+1} = 0, \dots, X_n = 0)$ is

$$\int_0^1 \theta^k (1-\theta)^{n-k} dF(\theta).$$

- Remember: θ is the probability of $\{X_1 = 1\}$.
- We have a convex credal set $K(\theta)$.

Strong indep. from exchangeability

- So, n variables amongst infinitely many exchangeable variables.
- Represented by a convex credal set $K(\theta)$ as

$$P(X_{1,\dots,k} = 1, X_{k+1,\dots,n} = 0) = \int_0^1 \theta^k (1-\theta)^{n-k} dF(\theta).$$

- Strong independence obtains if each vertex of $K(\theta)$ assigns probability 1 to a particular value of θ .
 - We have in fact obtained a type-2 product.
 - Similar argument works for general variables.
 - It is possible to extend the argument to general strong independence (but a bit artificial).

Back to strict independence

- Strict independence is very attractive.
- But it violates convexity.
- It does not have a "behavioral" interpretation...
- Is it true?
- NO!
- Let's think about E-admissibility.

Example

Credal set $\{P_1, P_2\}$: $P_1(s_1) = 1/8$, $P_1(s_2) = 3/4$, $P_1(s_3) = 1/8$, $P_2(s_1) = 3/4$, $P_2(s_2) = 1/8$, $P_2(s_3) = 1/8$, Acts $\{a_1, a_2, a_3\}$:

	s_1	s_2	s_3
a_1	3	3	4
a_2	2.5	3.5	5
a_3	1	5	4.

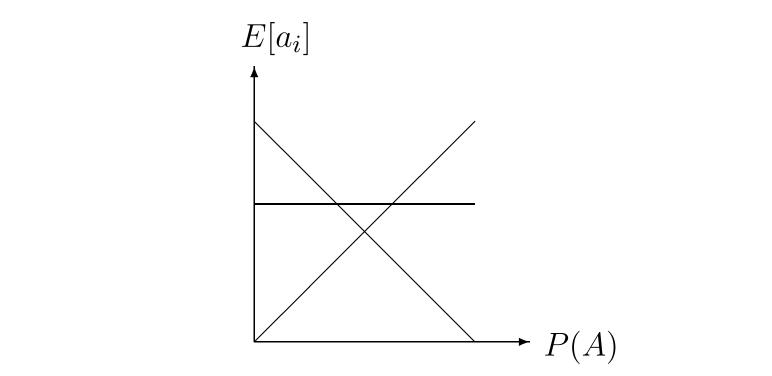
With respect to P_1 and P_2 , a_1 and a_3 are E-admissible but a_2 is not; with respect to the convex hull of $\{P_1, P_2\}$, all acts are E-admissible.

That is,

There is a difference between a set of distributions and its convex hull when one chooses among several acts.

Seidenfeld cuts

Three acts: $a_1 = 0.6$; $a_2 = 0/1$ if A/A^c ; $a_3 = 1/0$ if A/A^c .



We can "cut" pieces of the probability interval!

Axiomatizing partial preferences

- Can we axiomatize preferences amongst sets of acts, so as to obtain general credal sets?
- Yes. It has been done by Seidenfeld et al (2007) [it seems first idea by Kyburg and Pittarelli (1992)].
- Axioms on *rejection functions*: for a given set D of acts, R(D) indicates the acts that are *not* admissible.
 - Example: An inadmissible act cannot become admissible when (a) new acts are added to the set of acts; (b) inadmissible acts are deleted from the set of acts.
 - And so on.

Producing strict independence

- Are events A and B are strictly independent?
- Construct five acts a_0, \ldots, a_4 :

	AB	AB^c	$A^{c}B$	$A^c B^c$
a_0	0	0	0	0
a_1	$1 - \alpha$	$-\alpha$	0	0
a_2	$-(1-\alpha)$	lpha	0	0
a_3	0	0	$1-\beta$	-eta
a_4	0	0	-(1-eta)	eta

• Test: if we observe that for every $\alpha, \beta \in (0, 1)$ such that $\alpha \neq \beta$ we have some act rejected, we can conclude that *A* and *B* are strictly independent.

Just to close

- How about confirmational independence for general credal sets?
- Very weak: fails decomposition/weak union/contraction!

		-				
	1		2	3	4	
P(X = 0 W = 0, Y = 0), P(W = 0, Y = 0)	lpha, 1/4	C	α, 1/4	α , 1/4	$\beta, \frac{\beta}{\alpha}$	$\frac{2}{+\beta}$
P(X = 0 W = 0, Y = 1), P(W = 0, Y = 0)	lpha, 1/4	C	α, 1/4	α , 1/4	$\beta, \frac{\alpha}{\alpha}$	$\frac{2}{+\beta}$
P(X = 0 W = 1, Y = 0), P(W = 0, Y = 0)	α , $\frac{\alpha/2}{\alpha+\beta}$	$\alpha, \frac{1}{2}$	$rac{(1-lpha)/2}{2-(lpha+eta)}$	α , 1/4	β , $1/4 \qquad \beta$, 1	
P(X = 0 W = 1, Y = 1), P(W = 0, Y = 0)	α , $\frac{\beta/2}{\alpha+\beta}$	$\alpha, \frac{1}{2}$	$rac{(1-eta)/2}{2-(lpha+eta)}$	α , 1/4	β , 1/4	
	5		6		7	
P(X = 0 W = 0, Y = 0), P(W = 0, Y = 0)	$\beta, \frac{(1-\beta)/2}{2-(\alpha+\beta)}$		$\frac{\alpha+\beta}{2}, 1/$	'4 β,	1/4	
P(X = 0 W = 0, Y = 1), P(W = 0, Y = 0)	$\beta, \frac{(1-\alpha)}{2-(\alpha)}$			4 α, 1/4		
P(X = 0 W = 1, Y = 0), P(W = 0, Y = 0)	β , 1/4		α, 1/4	$\frac{\alpha+\beta}{2}$	³ , 1/4	
P(X = 0 W = 1, Y = 1), P(W = 0, Y = 0)	eta, $1/$	4	β , $1/4$	$\frac{\alpha+\beta}{2}$	3 , 1/4	
Failure of decomposition and weak union; $\alpha, \beta \in (0, 1)$.						

Independence Conceptsin Imprecise Probability - p.104/12

Overview

- Some basic (mostly known) definitions: credal sets, lower expectations and probabilities, decision making, and the like.
- 2. Structural assessments: vacuity, uniformity, exchangeability.
- 3. A brief review of stochastic (conditional) independence.
- 4. Confirmational/strict/strong/epistemic/Kuznetsov/others independence.
- 5. Comparison.
- 6. A look into the messy world of zero probabilities.

Potentially null events

- Events may have zero *lower* probability but nonzero upper probability (cannot ignore those).
- Example of difficulties one may face:
 - Suppose we refuse to define a conditional credal set K(X|Y = y) whenever $\underline{P}(Y = y) = 0$.
 - Consider: Y is "irrelevant" to X if

 $K(X|Y \in B) = K(X)$ whenever $\underline{P}(Y \in B) > 0$.

- But Y may have finitely many values, and for each value y of Y there is a distribution P in K(Y) such that P(Y = y) = 0.
 - Then Y is irrelevant to any other variable!

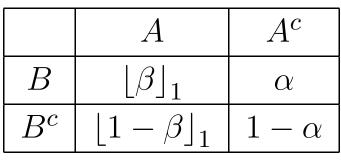
Full conditional measures

- The most elegant solution is to consider *full probability* measures.
- A full probability measure is a function $P(\cdot|\cdot)$ on $\mathcal{E} \times \mathcal{E} \setminus \emptyset$ where \mathcal{E} is an algebra of events, such that
 - P(A|C) = 1;
 - $P(A|C) \ge 0$ for all A;
 - $P(A \cup B|C) = P(A|C) + P(B|C)$ when $A \cap B = \emptyset$;
 - $P(A \cap B|C) = P(A|B \cap C) P(B|C)$ when $B \cap C \neq \emptyset$.
- Full probability measures allow P(A|C) to be defined even if P(C) = 0!

The Krauss-Dubins representation

- We can partition a Ω into events L_0, \ldots, L_K , where $K \leq N$,
- such that the full conditional measure is represented as a sequence of strictly positive probability measures P_0, \ldots, P_K , where the support of P_i is restricted to L_i .

Example:



Here: P(A) = 0, but $P(B|A) = \beta$.

Using full conditional measures

- Unsurprisingly, Levi and Walley both adopt full conditional measures.
- A challenge is that full conditional measures seem to call for finite additivity.
 - Again, this is the path taken by Levi and Walley.

A problem with stochastic independence

- The usual product definition is now too weak!
- Consider: we may have

$$P(X, Y = y | Z = z) = P(X | Z = z) P(Y = y | Z = z)$$

and yet

$$P(X|Y = y, Z = z) \neq P(X|Z = z).$$

• (Failure may happen when P(Y = y, Z = z) = 0.)

Failure of symmetry

• Take epistemic irrelevance:

$$P(X|Y = y, Z = z) = P(X|Z = z).$$

But: this is not symmetric!!

Example:

$$A A^{c}$$

$$B [\beta]_{1} \alpha$$

$$B^{c} [1 - \beta]_{1} 1 - \alpha$$
Note: $P(A|B) = P(A)$, but $P(B|A) \neq P(B)$!

As before: symmetrize!

Definition of *epistemic* independence: Require

$$P(X|Y = y, Z = z) = P(X|Z = z)$$

and

$$P(Y|X = x, Z = z) = P(Y|Z = z).$$

- This is symmetric for sure.
- How does it fare with respect to the theory of graph-theoretical models?

Reminder: graphoid properties

Symmetry: $(X \perp\!\!\!\perp Y \mid\!\! Z) \Rightarrow (Y \perp\!\!\!\perp X \mid\!\! Z)$ Decomposition: $(X \perp\!\!\!\perp (W, Y) \mid\!\! Z) \Rightarrow (X \perp\!\!\!\perp Y \mid\!\! Z)$ Weak union: $(X \perp\!\!\!\perp (W, Y) \mid\!\! Z) \Rightarrow (X \perp\!\!\!\perp W \mid\!\! (Y, Z))$

Contraction:

 $(X \perp\!\!\!\perp Y \mid Z) \And (X \perp\!\!\!\perp W \mid (Y, Z)) \Rightarrow (X \perp\!\!\!\perp (W, Y) \mid Z)$

Problem with epistemic independence

It fails weak union!

	$w_0 y_0$	w_1y_0	w_0y_1	w_1y_1
x_0	lpha	$\lfloor\beta\rfloor_2$	$1 - \alpha$	$\lfloor 1-\beta \rfloor_2$
x_1	$\lfloor \alpha \rfloor_1$	$\lfloor \gamma \rfloor_3$	$\lfloor 1 - \alpha \rfloor_1$	$\lfloor 1 - \gamma \rfloor_3$

Remember:

Weak union: $(X \perp\!\!\!\perp (W, Y) \mid Z) \Rightarrow (X \perp\!\!\!\perp W \mid (Y, Z))$

Hammond's independence

Here is a proposal for independence:

 $P(B(Y)|A(X) \cap D(Y)) = P(B(Y)|D(Y))$ and

 $P(A(X)|B(Y) \cap C(X)) = P(A(X)|C(X)).$

- This is symmetric.
- It satisfies weak union! But if fails contraction...

Remember:

Contraction:

 $(X \amalg Y | Z) \& (X \amalg W | (Y, Z)) \Rightarrow (X \amalg (W, Y) | Z)$

Conclusion

- There are many different structural assessments for credal sets.
- Vacuity/uniformity/exchangeability are quite useful.
- Independence is the most important one.
- There are many different concepts of independence for credal sets.
- A study of (conditional) independence touches on
 - convexity and decision-making;
 - conditioning and full conditional measures.

My humble suggestion:

We need to move to general credal sets, so that strict independence comes naturally (and many other things come naturally then...).

Conclusion

- There are many different structural assessments for credal sets.
- Vacuity/uniformity/exchangeability are quite useful.
- Independence is the most important one.
- There are many different concepts of independence for credal sets.
- A study of (conditional) independence touches on
 - convexity and decision-making;
 - conditioning and full conditional measures.
- My humble suggestion: We need to move to general credal sets, so that strict independence comes naturally (and many other things come naturally then...).

Final words on independence I

- Epistemic irrelevance/independence is quite intuitive and simple to state for convex credal sets.
 - Difficult to handle computationally.
 - Fails the contraction property (perhaps ok?).
 - Requires full conditional measures and associated challenges (perhaps then use type-5/regular independence?).

Final words on independence II

- Strict independence is simple to state and inherits all the familiar properties of stochastic independence
 - Fails convexity, but this has behavioral meaning.
 - Nonlinear, but this is unavoidable in the end.
 - Can be adapted to full conditional measures (but need extra work).

Final words on independence III

- Strong independence: popular because people want at once convexity and stochastic independence, no matter what.
 - It can be justified in some cases (exchangeability).
 - But hard to justify in general.