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A person looks at the sky, and tries to assess what she exgaotd the weather in the
near future; another person weighs the costs of a finanguicagion against its expected gain.
Such expectations can sometimes be translated into a singieer: for instance, the expected
return on the financial application may be exactly 100 magaiaits. More often, one has less
determinate assessments about expectations, such aseitexpeturn between 30% and 40%
on this investiment.” Or perhaps, “I'd rather bet that itlwdin tomorrow than that | get heads
in the next toss of this coin.” In general, assessments §padet of probability distributions
that represent the uncertainty about a particular sitnatithis initial chapter introduces some
concepts and tools that are useful in dealing with such sets.

1 Possibility space, states, events

The first element of this investigation is tet of possible states of the warl&ach state is a
complete description of all aspects of the world that arentdrest; states are mutually exclu-
sive. This set of states, denoted Qy is called thepossibility space (Often (2 is called the
sample spaceand states are calleshmpleselementsoutcomesrealizations Discussion on
terminology can be found in Section 15.)

The following examples present possibility spaces thabarary, finite, countably and un-
countably infinite.

Example 1.1. We are interested in the weather forecast for next week. Antoa many
phenomena that interfere with such a forecast, we focussitvjio possibilities: the weather
may beSunnyor Rainy. The possibility space i® = {SunnyRainy}.



Example 1.2. Two coins are tossed; each coin can be he&fof tail (T"). The possibility
space i$2 ={HH,HT,TH,TT}.

Example 1.3. A coin is to be tossed times, and we are interested in the number of heads
that we will see in the sequence of tosses. If we take thataheence may go on forever,
the number of heads belongsfo= {0,1,2,... }. That s, the possibility space is the set of
non-negative integers.

Example 1.4. Suppose we consider infinite sequences of zeros and onesr¢hperhaps
produced by tossing coins, and suppose we understand egubnsew as the real num-
ber 0.w expressed in the binary numeral system. For instance, theeseel, 0,0, ... is
0.100.. ., that is, the real numbdr/2. Now the possibility space of all such real numbers is
the real interval) = [0, 1].

An eventis a subset of). The interpretation is that an eveAtobtains when a state in
A obtains. There is no fuzziness in our states and events: et either obtains or does not
obtain. For example, the sentence “Mary is young” does neti§pan event unless we have a
rule that decides exactly when the predicade “is young’us.trSuppose “young” means “less
than 18 years old.” Then the sentences “Mary is young” andriNaless than 18 years old” are
equivalent and both define an event.

Example 1.5. Two coins are tossed. Consider three events. Edent{ H H } is the event
that both tosses produce heads. Event { H H,T'T} is the event that both tosses produce
identical outcomes. Eveiit = {HH,T H } is the event that the second toss yields heads.

The superscript denotes complement with respect®pfor example,A¢ is the event con-
taining all states not inl. Theintersectionof eventsA and B is denoted byAd N B; that is, the
event containing states both ihand in B. Theunionof eventsA and B is denoted byd U B;
that is, the event containing statesdror B or both.

When we are dealing with an eveAtand this event obtains, we often say that we have a
succesgsif insteadA© obtains, we say that we havdalure.

2 Variables and indicator functions

Once we have a possibility space, we can imagine a functam i to the real numbers. Any
such functionX : Q@ — R is called arandom variable The shorter ternvariable is often
employed when referring to random variables. The set of @disfble values of variabl&’ is
denoted by2y.

A random variable is always denoted by capital lett&rsY”, Z, etc. A particular value of a
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variable is not capitalized. For exampiedenotes a value o, and{ X = =} denotes the event
{weQ: X(w) =2z}

If X is a variable, then any functiofi : ® — R defines another random variabfé¢X ).
Similarly, a function of several random variables is a rand@riable.

Example 2.1. The age in months of a persanselected from a populatiofi is a variable
X. The same population can be used to define a different varlabihereY (w) is the
weight (rounded to the next kilogram) of a persorselected from2. ThenZ = X +Y

defines yet another random variable.

Example 2.2. Suppose: coins are tossed. The possibility space containpossible se-
quences of heads and tails. Now define variable) as the number of coins that land heads
in w. The value ofX ranges fronD to n. This variable can be used to define interesting
events, such abw : X(w) < n/2} and{w : 5 < X(w) < 10} (if n < 5 then the second
event is the empty set).

Every event can be associated with a random variéblealled itsindicator function such
that/,(w) = 1if w € Aandl(w) = 0 otherwise. Any random variable can be expressed as a
linear, perhaps infinite, combination of indicator funaso

X =) X(w)L. (1)

we

This expression holds because for eatte (2 such thatv # W', 1,(w') is zero. So, for every
W' € €, both sides of Expression (1) refer(w’).

Indicator functions do deserve some attention, as theydeldan operations be easily ex-
pressed as pointwise algebraic operations. For examgentidrsection of eventd and B has
indicator function

IAﬂB = min([A, [B) = IAIB.

As another exampld,y- = 1 — 4. As a third example, consider unions of evefits} ,. We
haveIU?zlAi = max; [ 4,, and if all events are disjoint, then

n
]U?:lAi - z :]Al
=1

Becaused U B = (AN B) U (A°N B) U (AN B) and the latter three events are disjoint,

Taop =141 —Ip)+ (1 —1a)Ip+ Ialp =14+ I — I4lp.

Indicator functions are very useful devices, but sometitheg lead to heavy notation with
too many subscripts. It is better to ude Finetti's convention use the same symbol for an



event and its indicator function. For example, instead ofing A N B = [ 415, we now write
AN B = AB. Likewise,
AUB=A+B— AB,

and if the eventg A;}!*_, are all disjoint, then

?:1142‘ = ZAz"
=1
As another example, consider an expression that mixes detlgabraic notation:
(ANB)U(A°NB)=A(1-B)+ (1 - A)B=(A- B)*

While such expressions may seem perplexing at first, theyndaliy matters. Consider the fol-
lowing important result on general unions, and note how ndeckinetti’'s convention simplifies
the notation.

Theorem 2.1. Given eventg A;}" ,, then
UL, A = Z(—l)”lAj’n, (2)
j=1
WhereAj’n - Zl§i1<i2<---<ij§n Ai1 N Aiz N---N AZ]

Proof. The case: = 2 has been proven (that ig, U B = A + B — AB). Now consider an induction
argument: suppose the theorem holdsifer 1 eventsA; to 4,,_;. Note thatU}' | A; = A, + U?;llA,» —

A, N (U 4;), using the fact thal U B = A+ B — AB. As A, N (U 4;) = U2 4; N A, we can
use the induction hypothesis twice to obtain:

Uis1di = An+ 3
Z A; — Z AilﬂAi2—|— Z AilmAigmAig_-“ —
1<i<n—1 1<i1<2<n—1 1< <i2<izg<n—1

(Z AinAn— AilmAi2mAn+...).

1<i<n—1 1<iy <ig<n—1

By grouping terms we obtain Expression (2). O

3 Expectations

Suppose one is willing to “buy” a random variablefor any amounty that is strictly smaller
than some number[X]. The result of paying and gettingX is

X — .
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Now suppose the person is willing to “selk’ for any amount3 that is strictly larger than some
numberE[X]. The result of sellingX for 3 is

g—X.
We should expect thab[X] > E[X], for otherwise we might put our subject in a truly
embarrassing situation, as follows. Suppose
E[X]-E[X]=—-6 for somed > 0;

then by definition of£[X] and E£[X], the person must be willing to buy for E[X] — §/3 and
then to sellX for E[X] + /3. The net result of such transactions is
(X — (E[X]=0/3) + (B[X] +4/3) = X) = E[X]—E[X]+24/3
—§/3 < 0.

So, if E[X] < E[X], then the person stands to lose by engaging in two transadiat she, by
definition, was willing to accept!

Suppose that for some random varialllave haveE[X]| = E[X]. We then denote by [X]
the valueE[X] = E[X], and refer to it as thexpectatiorof X. The expectation of a random
variableX can be interpreted as a “fair price” faf: our subject is willing to buyX for less than
E[X], and is willing to sellX for more thanZ'[X].

If we find ourselves in the excepcional circumstance thatague expectatiof’[ X | is given
for every variableX, we can treai”|-] as a single entity, called asxpectation functionalWe
assume that any expectation functional should satisfy:

Definition 3.1 (Axioms for expectation functionals)

EU1 For constants andg, if « < X < 3, thena < E[X] < §.
EU2 E[X +Y] = E[X] + E[Y].
The first axiom is quite reasonable: the fair price #orcannot be smaller than the smallest

value of X, and likewise for the largest value &f. The second axiom takes the fair price of
X + Y as simply the fair price oKX plus the fair price of".

Some consequences of the axioms are obvious: for instdneés a real numberZ|o] = «
by EUL. And then, for any,

EX +(-X)]=E[X]+ E[-X]=0
and consequently:

E[X] = -E[-X]. (4)

The axioms have a number of consequences that are wortingstaplicitly (note thatX’ > Y
meansX (w) > Y (w) for anyw € Q):



Theorem 3.1. An expectation functional satisfies, for any real numbemd variablesX and
Y:

1. X >Y = E[X] > E[Y].
2. ElaX] = aX.

Proof. If X > Y, then
X-Y>0=EX-Y]>0= E[X]|+ E[-Y]>0= E[X]>-E[-Y] = E[X] > E[Y].

For the second statement, start by noting that, for anyémteg- 0, E[nX] = E[> " | X| =Y | E[X]
using finite induction on EU2. For two integets> 0 andm > 0, E]Y| = (n/n)E[Y] = (1/n)E[nY]
andEY] = (m/m)E[Y] = (1/m)E[mY]; thus(1/n)EnY] = (1/m)EmY]. TakeX = Y/m to
obtain E[nX/m| = (n/m)E[X]. So the second statement holdsifs a positive rational.

If « is not rational, recall that the rationals are dense in thésréhat is, there is always a rational
between two distinct reals). Assumdé > 0. If E[X]| = 0, thenaE[X] = E]aX] = 0 and the desired
result obtains). Assume thefi{X] > 0, and produce a contradiction by assumwg[X] < E[aX].
Find a rational- such thatv < r < E[aX]| /E[X]. Then: (@)a < r = aX <rX = ElaX] < E[rX];
(b) r < FlaX] /E[X] = rE[X] < E[aX] = E[aX]| > E[rX]. So we get a contradiction. A similar
contradiction obtains if we assume thab [ X ] > E[aX]. ThusaE[X]| = ElaX]if X > 0.

If X is not always nonnegative, then writeasY — 7, whereY = max(X,0) andZ = max(—X,0),
and use the fact that[—Z] = —E[Z] to produce the result as follows[aX] = ElaY —aZ] =
E[aY] - ElaZ] = aE[Y]| — aFE[Z] = aE[X]. O

Thus, expectation functionals dieear becausev[a X + Y] = aE[X] + SE[Y], and are
monotonebecauseX > Y impliesE[X] > E[Y].

Example 3.1. Suppose? = {w;,ws,ws} and take the four variables in Table 1. Suppose
we know that a person has bounds on her fair prices suctE{#éf] € [, v;], wherew,; and
v; are also indicated in Table 1.

Take an additional variabl&; such thatXs(w;) = 3, X5(w2) = —1, X5(w3) = 2. Axiom
EU1 requires thab'[X5] € [—1,3]. As X5 = X + X + 2X3, axioms EU1-EU2 imply
E[X5] = E[X ]+ E[X2] + 2E[X3].

There is no unique fair price faXs given the assessments in Table 1. All we can say is that
fair prices forX; must belong to an intervals, v5]. Certainly

ps > p + po +2p3 = 1/3,
and

vs < v+ v+ 2V3 = 10/3

Actually, the best bounds ali[ X ;] are[11/18,11/6]; an easy method to obtain such bounds
is discussed in Example 6.2.



Xi | Xi(wr) | Xi(wo) | Xi(ws) Hi v
X 1 0 0 0 |2/3
X5 2 —1 0 0 2
X3 0 0 1 1/6 | 1/3
X4 -1 0 1 —1 0

Table 1: Variables and bounds on their prices (Example 3.1).

It remains to examine the relationship between fair pricgs], the “maximum buying price”
E[X], and the “minimum selling priceE'[X]. Consider the following rationale:

¢ If one holds a set of expectations far, then this person must be willing to buy for any
amount smaller thaimf E[X].
e Likewise, the person must be willing to sél for any amount larger thasup E[X].

For instance, in Example 3.1 we should take egacs the lower expectatiafi| X;], and likewise
v; should be the upper expectatiéiX;]. We are thus led to the definition:

Definition 3.2. Thelower expectation and thepperexpectation of variabl& are respectively

E[X]=imnfE[X] and E[X]=supE[X].

For any variableE[X] = —E[—X] because
E[X] = —sup B[-X] = —E[-X]. (5)
If o < X < 3, then clearly
a<EX]<8, a<B[X]<3
Also, fora > 0 (note:« is nonnegative!),
ElaX] = aE[X], ElaX] = aFE[X].
Moreover, for any two variable¥ andY,
E[X +Y] =inf E[X + Y] > inf E[X] + inf E[Y] = E[X] + E[Y]

and

EX+Y]=supE[X +Y] <sup E[X]+sup E[Y] = E[X] + E[Y]

The discussion so far has implicitly assumed thak'] and E[X] are finite; otherwise, we
may run into difficulties whenevel [ X| = E[X] = oo. In this chapter we adopt the following
assumption, which is enough to avoid problems given axiobhs-EU2 and Definition 3.2:

Assumption 3.1. Every random variable is bounded.



4 Some consequences of the axioms

The assessment of expectations for some variables corsstte values of other assessments
through axioms EU1-EU2. Here we examine a few such constrain

4.1 Simple variables and their expectations

A random variable isimpleif it may assume only a finite number of different values. A gien
variableX can always be written as follows:

X = ZaiAh
i=1
for a set of numbers; and indicator functionsl;. Axioms EU1-EU2 imply:

i=1 =1 =1

E[X|=E

Obviously, if the possibility space is finite then any val&ls simple. In this case we can
use Expression (1) and write:

E[X] = E

> X(w)[w]
= ) X(w)E[L)]. (6)

In words: if the possibility space is finite, every expedatiunctional is defined uniquely by the
expectationg[],,] for eachw € .

Example 4.1. A six-sided die is rolled. The possibility space(ls= {1,2,3,4,5,6}. Vari-
able X maps{1, 3,5} to zero and{2,4,6} to one (X is the indicator function of “an even
number obtains”). Variabl® maps a face with pips to2i. Suppose the expectations for
Elw;] have been assessed, for 1. .. 6. Note that we us&’[w;| instead of the more cumber-
some notatiorf[I,,,]. We haveE[X] = Elws] + Elws] + Elws] andE[Y] = 3°°5_| 2iE[w,].

If W= XY?2 thenE[W] = 16E[ws] + 64E[wy] + 144 F|wg).

We might try to use simple variables to help in computing tkeeetation for variables in
infinite possibility spaces. For a variablg consider the set of all simple variablgssuch that
X > Y. Forall thoseY’, we haveE[X]| > Y. It is reasonable to expect that the supremum of
E[Y] for all suchY will approximateE[X] rather well:

E[X]~sup (E[Y]:Y issimple andX > Y).

This strategy is indeed successful, in the sense/ith&l is equal tosup £[Y], in many situations.
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4.2 Inequalities: Jensen, Wlder, Cauchy-Scharwz

Inequalities are quite important because they allow us tmmtauantities, sometimes quite ac-
curately, even when we have few values of expectations at.f#ome inequalities are so useful
that they receive special names.

Theorem 4.1(Jensen inequality)lf f(X) is a convex functionf(E[X]) < E[f(X)].

Proof. If f(X) is convex, there is a line through the poift[ X ], f(E[X])) such thatf (X) lies above the
line; thatis,f(X) > f(E[X])+u(X — E[X]) for someyu. Use monotonicity:E[f (X)] > E[f(E[X])]+
Elu(X = EIX])] = f(E[X]) + pE[X — E[X]] = f(E[X]). O

Monotonicity can be used to turn pointwise inequalitie® iimtequalities for expectations.
For instance, note thatif, 5 > 1 are such that/a + 1/ = 1, then for anyu, b > 0:

ab = exp(log ab) = exp((1/a)loga®+(1/5) logb’) < exp(log(a®/a+b°/3)) = a®/a+b" /5.

Whena = 0 or b = 0, the inequalityab < a*/a + b°/3 also holds. Thus we conclude that for
any two variablesY andY’,

E[X|[Y]] < E[|X| /a+ E[|Y|’] /8 whenever,3 > 1andl/a+1/3 = 1.
This inequality can in turn be used to prove:

Theorem 4.2(Holder inequality) For real numbersy, 3 such thaty, 5 > 1 and1/a+1/5 =1,
BIXY]] < {/E[X]/E[Y]].

Proof. SupposeF|[|X|*] = 0. Asa > 1,if E[|X|%] = 0thenE[|X|%] > E[|X|]* by Jensen inequality
and thenE[|X|] = 0. As |X|sup|Y| > |XY|, we have0 = E|[|X|]sup|Y| > E[|XY]] > 0 (the
supremum is finite by Assumption 3.1). Likewigg[| XY|] = 0 if E[|Y|ﬁ] = 0. So Holder inequality
holds in these cases. Now suppdseX |*] > 0 andE[|Y'|°] > 0; then:

Blxvl  _ | 1x1 1yl 1 X[ ] il
YE[X[]VE[Y]7] VEIXPPTVENYP]] — o [(VEIXFD] 8 [(VEYP)? ]
and the last expression is equalltex + 1/ = 1 by assumption. O

Holder inequality leads to another famous inequality @ikinga = 3 = 2):

Theorem 4.3(Cauchy-Schwarz inequalityP[| X Y] < /E[X?] E[Y?].



5 Moments, variance and covariance

Expectations of powers of variables are ubiquitous quastthat have special names:
Definition 5.1. Theith momenof X is the expectatior[ X?].
Definition 5.2. Theith central momenof X is the expectatiod’[( X — F[X])"].

Definition 5.3. ThevarianceV [ X] of X is second central moment &f.

Note thatV[X] > 0 for any X. Moreover,

VIX] = E[(X - BX])]
E[X? - 2X B[X] + E[X]’]
= E[X?] - E[X)*.

Definition 5.4. Thecovarianceof variablesX andY is Cov(X,Y) = E[(X — E[X])(Y — E[Y])].

An easy consequence of the Cauchy-Schwarz inequality is

Cov(X,Y) < VX]V]Y].

If two variablesX andY are such thaCov X, Y = 0, thenX andY areuncorrelated

As an exercise, suppose we have variablgs. . ., X,,, all with expectationgZ[X;] in the
interval i, 7z]. Additionally, supposeX; and.X; are uncorrelated for any# ;. If we define the

mean .
Yy — Zi:l Xi’
n
then its expectation is

n n -

<ZX B f]

= (1/n?) ZE [(Xi — E[X))?] + (1/n*) Y E[(X; — E[Xi])(X; — E[X;))]

G

= <1/n2>ZV[XZ-]. (8)

and its variance is

B[ (Za - Za )] - s

VY] = -
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6 Probabilities

The expectation of an indicator function is be easily intetgd: For any event, the expectation
E[A] indicates how much we expedtto “happen.” That is, if we were to get 1 in case the event
A obtains and 0 otherwise, how much would the indicator flumcti be worth?

Such an interesting kind of expectation deserves a spemiaén

Definition 6.1. The probability of eventA, denoted byP(A), is equal toE[A].

We can likewise define lower and upper probabilities:

Definition 6.2. Thelower andupperprobabilities of event! are respectively
P(A)=E[A] and P(A)=E[A].

Thus,P(A) = inf P(A) andP(A) = sup P(A). Note that for any even?(A) = 1 — P(A°)
because

P(A) = E[Al=-FE[-Al=-E[A°~ 1] = —(E[A] - 1)
= 1-E[A)=1-P(A). 9)

A probability measuras a function that assigns a probability to each event. A abdty
measure satisfies:
PU1 For any eventd, P(A) > 0.
PU2 The spacé) has probability oneP(Q2) = 1.
PU3 If eventsA and B are disjoint (that isA N B = (), thenP(AU B) = P(A) + P(B).

These properties are direct consequences of EU1-EU2.

Proof. For any eventA > 0; thus EU1 impliesP(A) = E[A] > 0. The indicator function of? is

identically one, so EU1 leads tB(2) = 1. Finally, P(AUB) = E[AUB] = E[A+ B| = E[A] +

E[B] = P(A) + P(B) whenA N B = () by EU2. Note the simplifying power of de Finetti's convemtio
O

In the remainder of this section these definitions are ilatetl in the context dinite possi-
bility spaces, where we obtain from Expression (6):
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Theorem 6.1. If the possibility space is finite, then for any variable

E[X] = ) X(@)P(w), (10)
and for any event,
P(A) = E[A] =) Aw)Pw) =) Pw). (11)
we2 w€eA

Example 6.1. A six-sided die is rolled. Suppose all states{bhre assigned precise and
identical probability values. We must haye ., P(w) = P(?) = E[Q] = E[1] = 1, thus
we haveP(w) = 1/6 for all states. The evert = {1, 3,5} (outcome is odd) has probability
P(A) =1/2. TheeventB = {1,2,3,5} (outcome is prime) has probabilify(B) = 2/3.

These results emphasize a point that may not be immedidtelgus from the axioms EU1-
EU2: we need only: — 1 numbers to completely specify an expectation functionak @pos-
sibility space withn states. This follows from the fact that— 1 probabilities are sufficient to
specify a probability measure over a possibility space wisitates. This simple fact can be used
to great effect.

Example 6.2. Consider again Example 3.1, where a person announces &etiams con-
cerning purchase and sale of variables. The person agrgesdoaseX; for up to u;; we
interpret this to mea®’'[ X;] > n; and write

> Xi(w)P(w) > pi.

Likewise, the person agrees to s&l| for v; or more; we interpret this to medi[ X;] < v;
and write

Y Xi(w)P(w) < v

We have? = {w, w9, w3} and the variables and assessments in Table 1. Ygitggdenote
P(w;), we have

0<p1<2/3, 0<2p1—p2<2, 1/6<p3<1/3, —1<p3—p1 <0. (12

Each probability measure ov@rcan be viewed as a poiip;, p2, p3). All these points must
satisfyp; > 0 and) _, p; = 1, so they live in the simplex depicted in Figure 1. Inequeiti
(12) specify a set of measures, indicated in the figure by #iehed region. This set of
probability measures onvex— whenP; and P, belong to the set, their convex combination
aP; + (1 — a) P, also belongs to the set far € [0, 1].

Take variableX5 as in Example 3.1. The set of possible value€@X5] is the interval

min (3p; — p2 + 2p3)

, max (3p; —p2 +2p3) |,
P1,p2,P3 P1,P2,P3

where the minimum and maximum are subject to inequalitigd®). An exercise in linear
programming produces the interval /18, 11/6]. Thus a transactioX; — .5 is acceptable
for us < 11/18; likewise, a transaction; — X5 is acceptable fors > 11/6.
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ps
P
(1/2,0,1/2)
P (2/3,0,1/3) _ (0,2/3,1/3)
(5/6,0,1/6) AZ%%%%%%%%%%Z% : (0,5/6,1/6)
o (2/3,1/3,0) (1/3,2/3,0) \ £

Figure 1: Left: the simplex containing all probability maass in a possibility space with three
states. Right: a view from the point (1,1,1) of the simpled #ime set of probability measures
discussed in Example 6.2.

The right drawing in Figure 1 usdsaricentric coordinates These coordinates are quite
valuable in the study of sets of probability measures, astha be used to represent the simplex
of all probability measures over three disjoint and exhaasivents. Each vertex of the triangle
represents a measure assigning probability one to an emeshpfobability zero to the other two
events). Figure 2 shows a few valuable geometric relationserning baricentric coordinates.
Suppose we have a probability “pointp;, p2, ps) and we wish to represent it in baricentric
coordinates. Calculations are simplified if we write thispas(a(1 — 3), (1 — a)(1 — ), 8).
Clearly 5 = p3. To obtaina, consider two cases. When + p, = 0, we have the point0, 0, 1)
and we can choose any, for instance = 1/2. Whenp; + p, > 0, thena = p;/(p1 + p2).
By placing axes as in the right drawing in Figure 2, we redugeproblem to: find the two-
dimensional pointyu, n) that corresponds to poirt (1 — 3), (1 — «)(1 — 3), 3). Relations in

the triangles yield: = v2(1/2 — a)(1 — 8) andn = 3+/3/2.

Suppose we have points drawn in baricentric coordinatesed® the coordinates of a point
in the triangle, imagine three lines bissecting the angléseotriangle, and read the coordinates
on these lines. The coordinates of a point are read by phogettte points to the bissecting lines.
Figure 3 illustrates the process.

At this point we digress for a moment, and comment on alteresiin approaching proba-
bility theory, still assuming a finite possibility space. \Wave adopted axioms EU1-EU2 and
derived properties PU1-PU3 from Definition 6.1. We could tldifferently. We could take
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(1-a)(1-p) 37
p3o“ ’ D2
a(l =) —
Yo §
Vs -(v2/2 - 4) Ik
:
b1 .
—V2/2 — V2/2

Figure 2: Relationships in baricentric coordinates. Ca@sa point«(1—3), (1—«a)(1—3), )
and its representatiofu, ). In the left we see a top view of the probability simplex; weda
a(l—=0)/y=(1—-a)(1—p)/(1 —~)and themn = ~. Using the fact thaf) = 7r/4 radians,
§ = v/2(1 — a). In the larger triangle, we have(v/2/2 — 5 /M \/3/2/(1/3/2 —n) and then
(V2(1 - a) = v2/2)/u=1/(1 - B) because, = 3/3/

b3

P, =(2/3,1/12,1/4)
= (5/18,1/6,5/9)

(1/3,0,2/3)

/

LI

(1/2,0,1/2) (0,1/2,1/2)

P2

-~ (1/2,1/2,0) .

Figure 3: Baricentric coordinates: each point in the teagipresents a probability measure over
a possibility space with three states. Each vertex of tlamgle assigns probability one to an
event; the coordinates of a point are read on the lines lingdbe angles to the triangle.
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PU1-PU3 asxioms anddefineexpectation as
EIX]=) X(w)Pw).
we

That is, probability is the primitive concept and expeaatis a derived concept. In this case
EU1-EU2 are direct consequences of PU1-PU3(# X < 3, thena <} X (w)P(w) <
Biif Z=X+Y,thenE[Z] =Y _o(X(w) +Y(w))Pw) = E[X] + E[Y]).

In short: in finite spaces one may start from axioms EU1-EUR @arive properties PU1-
PU3, or one may start fromxiomsPU1-PU3 and derivpropertiesEU1-EU2. This interchange-
ability of axioms becomes more delicate in infinite spacepetiding on the assumptions one is
willing to take regarding limit operations.

7 Some properties of probabilities

As the results in this section show, even a few expectatiadsagsumptions can significantly
constrain probabilities of interest. In practice we findsmlves relying on a variety of assess-
ments, be them point-valued, interval-valued, or sete@uDepending on these assessments
and on our computational abilities, other probabilitiesl @xpectations may be calculated or
bounded.

7.1 Complements, unions, intersections

As A and A¢ are disjoint andd U A¢ = 2, we haveP(A) + P(A¢) = P(Q) = 1 and then
P(A)=1— P(A%). (13)

Consequently:
P)=1—P0°)=1-P(Q) =0. (14)

By applying the finite additivity axiom — 1 times we get:
P(Uj,B;)=> P(B;) whenever events; are disjoint. (15)
i=1
If events{B;} form a partition of(2 (that is, B, are mutually disjoint and their union is equal to

Q):
P(A) = P(UL,ANB;) =) P(ANB). (16)

An important consequence of the axioms is an expressioR(fdrU B) that does not require
A andB to be disjoint:

P(AUB)=P(A)+ P(B)— P(ANnB). (17)
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The proof is simple: start froml U B = A + B — AB; use the linearity of expectations and
remember thatl B = AN B.

Much more interesting is the following result on arbitramyians of sets (not necessar-
ily disjoint), directly obtained from Theorem 2.1. The falNing notation is useful: for a set
of events{A;},, defineS;, as the summatioy> P(A4;, N A;, N---NA;,), where the sum-
mation is over alll < 4; < iy, < --- < i; < n. Thus we haveS;,, = Y I, P(4;),
Son = D 1<iy<ip<n P (A N Ajy), and so on. We take; ,, = 0 wheneverj > n.

Theorem 7.1. Given eventg A; }7 |,

n

P(Up Ay) =) (—1)718;. (18)

J=1

Proof. From Theorem 2.1, we have" , A, = Z?Zl(—l)j“Aj,n; taking expectations on both sides we
obtain Expression (18) becausSe, = E[A; ,|. O

7.2 Inequalities: Fréchet, Bonferroni, Markov, Chebyshev

There are many situations where probability values (or doatlons of probability values) can-
not be precisely specified. Suppose for example that onesessthe probabilities of two events
AandB, but no precise value is given & A N B). In the absence of further information, all that
can be stated is that there is a set of probability valuesatteatonsistent with the assessments,
so that:

max (P(A) + P(B) — 1,0) < P(AN B) <min (P(A),P(B)). (19)

These are special cases of th&chet boundsTo obtain the upper bound in Expression (19),
note that eitherl or B may contain the other. To obtain the lower bound, note thenesA and

B can be disjoint wheneve?(A) + P(B) < 1;if P(A) + P(B) > 1, we obtain the minimum
of P(A N B) by settingP(A U B) = 1 and using Expression (17).

Consider a similar situation, where one deals with a seteifits{ A;} , and specifies some
of the summations, ,, used in Theorem 7.1. For example, one specifies 6haly and S, ,,.
The following bounds are examples®énferroni inequalitiesand are used in a large number of
fields (actually, the “classic” Bonferroni inequalitie®an fact more general in that they bound
the probability that any number of successes regardingihe

Theorem 7.2. Givenn events4;, then for anym > 0,

2m 2m—1

> (1S < PULA) < Y (1718 (20)

j=1 j=1

Proof. The case: = 2 is immediate because(A;)+ P(As) — P(A; N Ay) < P(A; U Ay) < P(Ay)+
P(As) by Expression (17). Now consider an induction argument:pese the theorem holds far —
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1 events. The upper bound dA(U}, A;) is generated by taking expectations on Expression (3) and
by keeping only th&m — 1 terms inside the first parenthesis and #we — 2 terms inside the second
parenthesis. The induction hypothesis guarantees thmas te¥maining in the first parenthesis are larger
than P(U'"' 4;) and that terms remaining in the second parenthesis areesrtiehP (U "' A, N 4;).

The result is certainly larger thaR(U?_; A;). A similar procedure (keepin@m terms inside the first
parenthesis angin — 1 inside the second parenthesis) generates the lower bound. O

Expression (19) and Theorem 7.2 deal with situations whemeesprobability assessments
are precisely specified, but they are not enough to pin downvéthue of other probabilities
— they only define a set of consistent values. In practice i m&n be the case that initial
assessments are not precise.

Example 7.1.SupposeP(A) € [0.5,0.6] andP(B) € [0.6,0.7]. These two interval-valued
assessments imptytax (0.5 4+ 0.6 — 1,0) = 0.1 < P(AN B) < 0.6 = min(0.6,0.7).

Clever manipulation of axioms EU1-EU2 can lead to usefufjuradities connecting expecta-
tions and probabilities. As an example, consider the falgyecelebrated result.

Theorem 7.3(Markov inequality) For a nonnegative variabl& and a real numbet > 0,

Pz < X e

Proof. If X(w) < t, then{X > t}(w) = 0; thus X (w)/t > {X > t¢}(w) becauseX(w) > 0 and
t >0 If X(w) >t thenX(w)/t > 1 ={X > t}(w). ConsequentlyX/t > {X > t} and then
E[X]/t > E[X > t]. O

Thus if an assessmehl X| = « is given, we can infer thaP(X > t) < «/t for anyt > 0
without considering any other assessment.

The Markov inequality leads to an important inequality cectimg the expectation and vari-
ance of a variable:

Theorem 7.4(Chebyshev inequality)For ¢ > 0,

VIX]

P(IX —E[X]| >1t) < »

Proof. TakeY = (X — E[X])%. AsY > 0, we can apply the Markov inequality wifti and¢2:

E[(X - E[X])?] _ V[X]

P((X - EX])*>t) < = =

Now note thatP (X — E[X])? > ¢?) = P(|X — E[X]| > t). O
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7.3 Weak laws of large numbers

The Chebyshev inequality can be used to prove the followiog result:

Theorem 7.5. If variables X1, X», ..., X,, have expectation&[X;| € [u,71] and variances
V[X;] = o2, and X; and X, are uncorrelated for every # j, then for anye > 0 there is

6 > 0 such that ¥ 5
B(M—E<L<ﬂ+6) >1——.
_ n n

Proof. DefineY = (1/n) 3", X;; then the expectation and varianceofarep and ", o7 /n respec-
tively (by Expressions (7) and (8)). Apply the Chebyshewjiraity: P(|Y — E[Y]| > €) < 3, 07/(ne)? <
(max; 07)/(ne?); thatis, P(E[Y] —e <Y < E[Y] +¢€) > 1 —§/nfor § = (max; 0?)/e>. The result
follows asP(p—e <Y <Ji+¢) > P(E[Y] —e <Y < E[Y] +¢), becausq: — ¢ < E[Y] — ¢ and
n+e> E[Y]_+ e. As the result holds for every probability measure satigfythe constraints on expec-
tation and variance, we obtain the bound on the lower prdibabi O

The message of this theorem is simple yet powerful: if onessss the expectation of &l
asyu, then one is forced to believe that a long sequenck;ofill have a mean that is close [0
This statement is made more dramatic by taking limits:

Corollary 7.1 (Very weak law of large numbersif variables X7, X5, . .., X,, have expectations
E[X;] € [p, 71) and varianced/[X;] = o7, andX; and X are uncorrelated for every# j, then
foranye > 0,

n—~0o0

limE(,u—6<227<ﬁ+e) =1
= n

Proof. For anyd’ > 0, choose integeN > max; 07/(8'e?); thenP(i —e < (1/n) Y., X; <fi+e€) >
1—¢ forn > N as desired. O

If we are exceptionally knowledgeable about the variablggo the point that we can assess
identical and precise expectatiofA§X;| = p for all of them, we have:

Corollary 7.2 (Weak law of large numbers)f variables X, X5, ..., X,, have expectations
E[X;] = p and variancesV [X;] = o7, and X; and X are uncorrelated for every # j,

then for anye > 0,
lim P(‘Z’i—u‘ <6) =1.
n

n—oo

Note that even when all expectations are precisely specifiedmay have more than one
probability measure satisfying the given set of assessndiius the law still refers to a lower
probability.
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8 Conditioning

We now wish to define @onditional expectation ofX given eventB, that is to encode our
expectation abouk” upon learning thaB has obtained. We adopt:

Definition 8.1. The conditional expectation of given B, denoted by~ [ X |B], is

E[X|B] = whenP(B) > 0.

How can we justify this definition? Consider an auxiliary iabie Y that yieldsE[.X | B]
when B obtains andX otherwise:

E[X|B] ifwe B,
Y = BE[X|B] + (1 - B)X; thatis,Y (w) =
X (w) otherwise.

Now suppose thaE[Y] is equal toE[X]. This is a reasonable assumptionHfX|B] is to
represent the value of contingent onB. This simple assumption implies:

E[X] = E[Y],
E[BX + (1 - B)X] = E[BE[X|B]+ (1- B)X],
E[BX]+ E[(1- B)X] = E[B]E[X|B]+ E[(1- B)X],
E[BX] = P(B)E[X|B]. (22)

Expression (22) yields
E[X|B]) = E[BX]|/P(B) whenP(B)> 0.

When instead”(B) = 0, Expression (22) does not constraifiX | B] because botl'| BX] and
P(B) are zero.

Given Definition 8.1, it is natural to define conditional patliity as follows:
Definition 8.2. The conditional probabilityof event A given eventB is defined only when
P(B) > 0, and itis then equal t&/[A|B].

The following celebrated result is a straightforward capsnce of Definition 8.2:

Theorem 8.1(Bayes rule) If P(B) > 0, then

P(A|B) = (23)
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Conditional moments and conditional central moments afaek®in the obvious way; for
example, the conditional variance &fgiven eventB such thatP(B) > 0 is

VIX|B] = E[(X - EX|B)’|B] = E[X*|B] - E[X|B).

For two variablesX andY’, the conditional expectatioR[X|Y = y] can be viewed as a
function of Y; for eachy such thatP(Y = y) > 0 we get a real number. That i&[X|Y] is a
variable that is well-defined except whéi{Y = y) = 0. We can consider the expectation of
this variable E[E[X |Y]]. In the special case of a finite possibility space, a nicelresu

Theorem 8.2. For a finite possibility spacey | E[X |Y]] = E[X].

Proof. E[E[X|Y]] = >y py—y>0 Cx 2p(@[y) P(¥) = X x v.pv—y)=0 2p(z[y) p(y) = E[X]. O

9 Properties and examples of conditional probabilities

We now examine a few consequences of the definition of camditiprobability through Bayes
rule (Expression (26)).

Suppos€ B; }_, are events; then the following decomposition is obtaineteipgated appli-
cation of Bayes rule, assuming relevant events have pegitivbability:

= PB)[[P(Bi|NZ By). (24)

=2

The following easy result is often called ttegal probability theorem|f events{ B;} form a
partition of 2 such that allP(B;) > 0, then, using Expression (16):

P(A)=> P(ANB;) =Y P(AB)P(B). (25)

From previous derivations we obtain

pialg ~ PANDB) P(AN B) B P(B|A) P(A)
(AlB) = P(B)  P(ANB)+ P(A°NB) P(B|A) P(A) + P(B|Ac) P(A¢)’

and more generally, if théB; } form a partition such thaP(B;) > 0, then

__PUAIB)P(B)
R WEETAYI) (29)
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N

Figure 4: The events in Example 9.1; areas are proportiornaidbability values.

Example 9.1. A rather pedestrian example can illustrate basic facts tabanditioning.
Suppose some individuals in an office have a diséas€here is a test to detect the disease;
the test produces either resuttor R°. The probability of a resuli? conditional on the
presence oD is P(R|D) = 9/10 (the medical literature calls the probability of positiest
given disease theensitivityof the test). Also, the probability of a resuk® conditional on
the absence ab is P(R¢|D¢) = 4/5 (this is called thespecificityof the test). Suppose also
that P(D) = 1/9. What it the probability the person is sick if the test proemi&? Using
Bayes rule:

P(R|D) P(D) B 9/10 x 1/9

PURID) P(D) + P(RID9) P(DY) ~ 0/10 % 19+ 1/5x8/5 ~ /2

P(D|R) =

Figure 4 shows the various events in this story, showing tiettive measures. It is apparent
that the “size” of D N R “covers” about one third of the “size” aR.

The medical literature often discusses the following appaparadox involving conditional
probabilities.

Example 9.2. Suppose a person takes a test for a serious digeagkere P(D) = 0.01.
The test has sensitivity and specificity equal to 0.99, sedtrss to be a fairly good test. Still,
if one takes the test and the result is positive (indicatiisgabke), the probability of actually
having a disease is only 0.5! That happens becdig@|R) = (0.99 x 0.01)/(0.99 x
0.01 + 0.01 x 0.99) = 0.5. Thus a test for a rare event must have very high sensitivity a
specificity in order to be really effective. Drawing a diagraimilar to Figure 4 may clarify
the situation.

In many practical circumstances one cannot specify canditiprobabilities precisely. The
following example, describing thi@iree-prisoners probleppresents one such situation.

Example 9.3. There are three prisoners, Teddy, Jay, and Mark, waiting texecuted. The
prisoners learn that the governor will select one of themeadrbed, and that each one of
them is equally probable to be selected. Prisoner Teddydeiduat the warden knows the
governor’'s decision, and asks the warden about it. The wiaddes not want to tell Teddy
about Teddy's fate, but Teddy convinces the warden to saydnee of one of his fellow
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inmates who will be executed. As one of Jay or Mark is boundei@kecuted, apparently
the warden is not disclosing anything of importance. Thedemaris known to be an honest
person: if the warden says that someone is to be executedgueint will happen for sure.
Then the warden says that Jay is to be executed, and suddeddly Ts happy: he had a
chance in three to be freed, and now he has a chance in twae(dsdlsion is between Teddy
and Mark). But the same rationale could be applied if the eaftad said that Mark were to
be executed; so it seems that an irrelevant piece of inféeom# bound to increase Teddy's
chance of survival! There is something strange with the lemsen thatP(Teddy freed =
1/3 and P(Teddy freedwarden says Jay= 1/2.

Consider the following analysis of the three-prisonersbfgnm. The possibility space has

four states:
Teddy freed" warden says Jay

Teddy freedn warden says Matk
Jay freed) warden says Mark
Mark freedn warden says Jay

We know that
P(Teddy freed = P(Jay freed = P(Mark freed = 1/3.
Looking at the events ife, we note that
P(Jay freed warden says Mark= P(Jay freed,

and likewise,
P(Mark freedn warden says Jay= P(Mark freed .

Concerning Teddy’s freedom and the warden’s behavior,
P(Teddy freedn warden says Jgy= P(warden says Jayeddy freed P(Teddy freed,

and likewise forP(Teddy freedh warden says Mark. Thus, to completely specify proba-
bilities over(?, it is only necessary to assess

P(warden says JaVeddy freed .

How would the warden behave if Teddy is to be freed?

Suppose the warden has equal probability of selecting Jdyvark when Teddy is to be
freed; that is, suppose

P(warden says Jayeddy freed = P(warden says MatReddy freed = 1/2.
Then we have:
P(Teddy freedh warden says Jay=1/6, P(Teddy freed) warden says Mark= 1/6,

P(Jay freedh warden says Mark= 1/3, P(Mark freedn warden says Jay= 1/3.
Hence
1/6

3= /3

P(Teddy freed¢ivarden names Jay=
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This is the usual analysis of the three-prisoners problésiding the result”(Teddy freed =
P(Teddy freegiwarden names Jay= P(Teddy freedwarden names Majk= 1/3.

However, note that the statement of the three-prisonefsgarodoes not say anything about
the behaviour of the warden in cases where Teddy is to be.fidesldescription of the prob-
lem does not justifyP?(warden names Jakeddy freed = 1/2. It might be the case that the
warden will select Jay whenever Teddy is to be freed; thdt(aarden names Jakeddy freed =
1. Or it might be that the warden will select Mark whenever feddto be freed; that is,
P(warden names Jéleddy freed = 0. Thus all that is really known is

P(warden names Jékeddy freed € [0, 1]
and consequently

0 1/3
0+1/3"1/3+1/3

P(Teddy freegivarden names Jaye =[0,1/2].

10 Digression: probability zero and conditioning

At this point we should pause and discuss the fact that eapens/probabilities are not con-
strained given an event of zero probability. Recall tha®?({B) > 0, then P(A|B) is clearly
defined to beP(AN B) /P(B); butif P(B) = 0, thenP(A|B) is left “undefined.” We should
be clear on what this means, and on what tlies nomean.

It is useful to look at a seemingly similar situation thasas in arithmetic, namely, division
by zero. If we operate with the real numbers, we can undetstasm meaning ofv/ for any
two real numbers; but iff is zero, we cannot figure out the meaninggf3. One might try to
evaluatev/0 as some sort of infinity; but, staying within the real numbers cannot define /0.
Soa/0 is left “undefined.”

One might think thatP?(A|B) is similarly “undefined” whenP(B) = 0; however, this is
not the case. What “undefined” means here is tleatonstraints ornP(A| B) are defined when
P(B) = 0. Itis important to focus on Expression (22):

E[BX| = E[X|B] P(B).

Note that, ifP(B) = 0, this expression does not define any constrainPoa| B). Of course one
might try to defineP(A|B) to be some arbitrary quantity in such cases. but it seemsleséto
impose a value o (A| B) when we have no information to base it. One might give coimgta
on P(A|B), but they do not affect the underlyinonconditionaimeasureP, because the feasible
values ofP(A|B) will be multiplied by zero in the end.

There is, however, an entirely different way to proceed. idea is to treat conditional
probabilities as primitive concepts that are subject toesgpecific axioms, barring only those
conditioning events that are empty sets (thosaealy impossibleevents).
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That is, we again start with Expression (22), but we imposeesgeneral constraints that
any conditional probability should abide by. The most obgi@onstraint is that conditional
expectations should behave as expectation functionath, thve appropriate modifications (in
what follows the conditioning events are always assumee tadmempty):

EC1 For constants andg, if aB < BX < B, thenaB < E[X|B]| < #B.
EC2 E[X +Y|B] = E[X|B]| + E[Y|B].

By identifying P(A|B) with E[A|B], we then obtain a set of axioms for conditional probability
that may be easier to understand than EC1-EC2:

PC1 For any event4, P(A|B) > 0.
PC2 The spaced has conditional probability ong?(2|A) = 1.
PC3 If eventsA andB are disjoint (thatisANB = 0), thenP(A U B|C) = P(A|C)+P(B|C).

Now given these axioms, there is no more use for any “uncamdil’ expectation functional or
probability measure: to obtain one of these, just take tlheesponding entity conditioned on the
whole spacé2. That is, write£[X] as an abbreviation fab'[ X |©2], and likewise writeP(A) as
an abbreviation foP(A|2).

All of this would give a rather different status to conditadrexpectation (and conditional
probability), because they would not always be derived fther unconditional counterparts.
They would beprimitive concepts, satisfying their own axioms; the ensuing thearyldravoid
the annoying clauses “iP(B) > 0" because expectations and probabilities would be defined
given any nonempty event. The theory would be mathematigailite elegant when it comes to
define sets of conditional probability measures. HoweVes, kind of fully-conditional theory
does face some difficulties because it clashes with assangahat are often adopted fiofinite
possibility spaces.

11 Distributions

Suppose we have a possibility spde@and a probability measure ov@r Suppose also that we
have a variabl&X : (2 — R. Then there is a possibility spafg; containing every possible value
of X. The probability measure dn induces a measure over subset$§)gf by assigning to any
eventA C Qy:

PXe€A)=P{we: X(w) e A}). (27)

This definition does produce a function that satisfies PUB;Rid can be easily verified. The
measure ofi y is usually called thelistributionof X. Note: a distribution is always a measure;
it is just a convenient way to stress that a measure is defwverdtioe values of some variable.
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A measure over a possibility spafeinduces a single distribution for any variab¥e The
reverse is not true: a distribution fof generally induces a set of probability measures 6xer

Example 11.1.TakeQ2 = {wy,ws,ws3} and variableX such that
X(w1) =0, X(wz)=X(w3)=1.
SupposeP(X =0) =1/3andP(X = 1) = 2/3. This implies:
P(wi) =1/3, P(wz) + P(ws) = 2/3,

thus defining aetof probability measures ovél. One measure in this set assigiuv;) =
1/3, P(w2) = 2/3, P(w3) = 0; another measure assigfi¥w;) = 1/3, P(w2) = 0,
P(ws) =2/3.

Theconditional distributiorof variable X given eventB is the probability measure overy
such that, for any evert C Q:

P(X € A|B) = P({w € Q: X(w) € A}|B).

If P(B) = 0, then the right hand side is left “unspecified” (no constion it), and likewise for
the left hand side.

12 Finite possibility spaces: probability mass functions

In this section the possibility spa€eis assumed finite; a few useful concepts can be defined in
this case.

Given a variableX, theprobability mass functionf X, denoted by(X), is simply
p(z) = P{X =z}).

The probability of any eventt C Qx can be computed using the probability mass function of

X:
P(X € A)=) plx).

€A

Example 12.1.Consider a variablé& with & values. Theuniform distributionfor X assigns
p(x) = 1/k for every valuer of X.

Example 12.2.Consider a binary variabl& with values0 and1. TheBernoulli distribu-
tion with parameterp for X takes two valuesP({X = 0}) =1 —pandP({X =1}) = p.
The expectation ofX is E[X] = 0(1 — p) + 1p = p. The variance ofX is V[X] =
E[(X —p)?] = E[X? = 2pX + p*] = p(1 — p).
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The expectation of a variabl€ can be easily calculated using the probability mass functio
of X:

Theorem 12.1. E[X]| = ), 2p(x).

Proof. We partitionQ2 by running through the values df; thus a summation oves € ) can be split
into a summation over values &f and an “inner’” summation over subsets{f

EX]=) XwPw =YY aPw) =) aP(X=x)=> apx).
wen X we:X(w)=z X X

O

Consider a functiort” = f(X). ThenY is a function fromQy to ®. AsY and X can be
combined to take values frofto R, the probability mass function af can be computed either

by
py)=PAY =y} )= > p),

or by
py) =Py =y})= > Pw).

we, f(X(w))=y

We usually simplify the notation by implicitly assumity :

Y(z)=y

as itis clear that we should sum over the possible values.of

Example 12.3. Consider a variable&X with a uniform distribution over the integers from
—k to k. ThusQx is the set of integers fromk to k, andp(z) = 1/(2k + 1) for k € Qx.
Consider now a variabl® such thaty” = X2. Then(Qy contains the integers from to
k% that are squares of integers frainto £. The distribution functionp(Y’) is such that

P(y) = er[,k“xz:y p(x), so we have:

1

fory = 0;
_J 2%kf1 '
() { 57 fory e Qy,y#0,

A useful consequence of convexity is:

Theorem 12.2. E[f(X)] = >y f(x)p(x).

Proof. E[f(X)] = ¥ x Sucarxtwy—s £ (0)Pw) = Sx f(0)p(x). O
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Thus if we are only interested in expectations for a variablend functions ofX, we need
not be concerned with the possibility spdeeall we need is the probability mass functipfX).
The possibility space is hidden behind the calculations.

Given two variablesY andY’, we can define events suchf8X € A} N {Y € B}}. To
simplify the computation of probabilities for such “joirg¥ents, we can use tlant probability
mass functiop(X,Y) of X andY’, defined as:

p(r,y) = P{X =2} n{Y =y}).

Given a joint probability mass functigi( X, V'), we can easily compute the probability mass
functionsp(X) andp(Y'):

plr) = P{X =z})= > PUX=z}n{Y =y} = > py),

yeQy yeQy

and likewise

plr) = PU{X =2}) = > plx,y).

yeQy

Example 12.4. Consider two variableX andY’, with three values each, and with joint
probability mass function:

plx,y) |ly=1|y=2|y=3
z=1 | 1/10 | 1/25 | 1/20
r=211/20 | 1/5 | 1/25
z=3 | 1/10 | 1/50 | 2/5

Using this table, we computB({X <2} n{Y >2}) = 1/25+1/20 + 1/5 + 1/25 =
33/100. The marginal probability mass functigri X) is given byp(1) = 1/10 + 1/25 +
1/20 = 19/100, p(2) = 1/20 + 1/5 + 1/25 = 29/100, andp(3) = 1/10 + 1/50 + 2/5 =
26,/50.

Theconditional probability mass functigi( X | B) is a function defined only iP(B) > 0, as
p(z|B) = P({X = z}|B).

Thejoint conditional probability mass functidior variablesX;, ..., X,, given an evenB such
that P(B) > 0 is then:

p(1,...,2,|B) = P{Xyi=x1}n---N{X, =z, }|B).

Often the conditioning evenB is an assignment of values to variables; for example, we may
be interested ip(z, x2|{ X3 = x5} N {X4 = z4}). Notation is then simplified by omiting refer-
ences to variables and just writipgz, , x2|z3, x,) whenever possible.
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13 Credal sets

Given a collection of assessments concerning expectaiindsgprobabilities specify, we may
form the set of all probability measures that comply withéssessments — as we have already
done in several examples.

Definition 13.1. A credal setis a set of probability measures.

Denote the set of distributions for variable by K (X). We can now write the expressions
for lower/upper expectations/probabilities using thiszmetation:

E[X]= inf E[X], FE[X]=sup E[X],

PeK PEK

P(A) = inf P(4), P(4)= Sup P(A).
As we are only dealing with closed credal sets, we can alwegtace infima by minima and
suprema by maxima in these expressions.

The following result is quite useful:

Theorem 13.1.For closed convex sets, lower and upper expectations aagat at vertices.

Proof. Suppose a lower/upper expectation is attained at a noexvext of the credal se(X). Then

P, can be written asvFy + (1 — «)P; for a € (0,1) and two vertices’ and P, of the credal set.
Denote byE, [X] the expectation with respect 19,, and likewise forEy[X| and £ [X]. ThenE,[X] =
aby[X] + (1 — a)Eq[X]. If Ey[X] = E1[X] = E,[X] then the vertices also attain the lower/upper
expectation. The cadg)[X] > E;[X] is impossible for it implies tha&,[X] > E,[X] contradicting the
assumption thak, [ X ] attains a minimum/maximum, and likewise for the c&s@X] < E;[X]. O

A credal setK'(X) induces a set of conditional distributiohS§ X | B) by elementwise con-
ditioning; that is, by conditioning every distribution iR (X). The setK(X|B) is called a
conditional credal setThere are two alternatives, depending on how we treat zetoapilities
for B:

Definition 13.2. Strict conditioningonly defines the conditional credal skt given B when
P(B) > 0; in this casei is the set of all conditional measurég-|B).

Definition 13.3. Regular conditioning or simply conditioning only defines the conditional
credal set/X’ given B when P(B) > 0; in this caseK is the set of all conditional measures
P(-|B) such thatP(B) > 0.

Note that in regular conditioning conditional credal 88tX|B) may be defined even when
P(B) is equal to zero.

Conditional lower and upper expectations are defined in biveoas way:

28



Definition 13.4. The conditional lowerandconditional upperexpectations of variabl& given
eventB are respectively

E[X|B] = inf E[X|B] and F[X|B] = sup E[X|B]

PeK PeK

wheneverk (X|B) is defined.

Likewise for conditional upper and lower probability:

Definition 13.5. The conditional lowerand conditional upperprobabilities of eventd given
eventB are respectively

P(A|B) = inf P(A|B) and P(A|B)= sup P(A|B)

PeK PEK

wheneverk (X |B) is defined.

Example 13.1.Take a variableX with three values:;, x2 andxs. Supposek (X) is the
convex hull of two distributions:

PI(X:.I‘l):l, Pl(XZZCQ):Pl(X:.I‘g): ;
PQ(X = .1‘1) = PQ(X = ZCQ) = PQ(X = .1‘3) = 1/3
Regular conditioning leads to
PX =p{X =0 UX =a3}) = P(X = 22[{X =22 UX =13}) = 1/2.

Strict conditioning leaves these quantities undefined.

There is an analogue of Theorem 13.1 for conditional lowergyper expectations:

Theorem 13.2.For closed convex sets, conditional lower and upper expiectaare attained at
vertices.

Proof. Suppose a conditional lower/upper expectation is attaateal non-vertex?, of the credal set
K(X). ThenP, can be written a&«/y + (1 — a)P; for a € (0,1) and two vertices, and P, of the
credal set. Denote b¥,, [ X |B] the conditional expectation with respectfy, and likewise forEy[X | B|
and E; [ X |B] (whenever they are defined). Depending on how the credak $at|B) is defined, there
are two possible situations.

First, supposé’ (B) > 0 but P, (B) = 0; in this caseF, [ X|B] = Eyp[X|B]. Likewise if Py(X) =0
andP;(X) > 0thenE,[X|B] = F;[X|B].

Second, supposé&y(B) > 0 and P;(B) > 0. ThenE,[X|B] = BEy[X] + (1 — B)E,[X] for
B = aPy(B)/(aPy(B) + (1 — a)Pi(B)). If Ey[X] = E1[X]| = E,[X] then the vertices also attain
the lower/upper expectation. The cdsgX| > E;[X] is impossible for it implies thaky[X] > E,[X]
contradicting the assumption thag, [ X] attains a minimum/maximum, and likewise for the cageX | <
Ei[X]. O
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(1/2,0,1/2) p1- o
(2/3,0,1/3) T (0,2/3,1/3)
(5/6,0,1/6) , A@ (0,5/6,1/6)
e (2/3,1/3,0) (1/3,2/3,0) 2

Figure 5: Left: the set of probability measures discusse&xample 13.2: an assessment
E[X|wy Uws] > 1 produces a linear constraint from poirt 0, 0) to point(0,2/3,1/3). Right:
the set of probability measures discussed in Example 13.3.

At this point the following picture is complete. One startishaassessments over probability
valuesP(A;|B;) and expectation&[ X | B;], for various events and variables (whé?emay be
). We are then interested in the largest credal set that gempiith these assessments; this
credal set contains every distribution that is consistettt the available information — hence it
is a faithful representation for the assessments.

One may also find that, given a set of assessments, no privpdistribution satisfies them.
For instance, the assessmeftsd|B) = u, P(B) = v and P(A) = 0 are inconsistent when
u>0,v>0.

Example 13.2.Consider Example 6.2. Suppose th#tXs|w, Uws] > 1 is assessed for

a variable Xg such thatXg(w1) = 1, X¢(w2) = 3 and Xg(ws) = —3. We then have
3p2/(p2 + p3) — 3p3/(p2 + p3) > 1, as(p2 + p3) > 0 for every valid measure (given the
other assessments). Thus the constrai¥pis— 3ps > p2 + ps; that is,ps > 2ps. The
credal set produced by all assessments is shown in FigurefpoSe we want to compute

the value of P(w;|w; Uws). This probability cannot be obtained precisely, as evetyeva

in the interval[1/2, 3/4] is allowed by the assessments; the lower bound is produc#teby
point (1/2,1/3,1/6). That is, P(w|w; Uws) = 1/2 and P(w;|w; Uws) = 3/4. Now if

the assessmenb > 5ps were made, the assessements would become inconsistent as no
probability measure satisfies all of them.
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Example 13.3.To close the chapter, consider a nonconvex credal set.eifitiepyof a
variable X is

H(X)=—- > p(x)log, (p(x)).

x:p)(z)>0

This quantity finds application in several fields, from Ermgiring to Economics, as it tries
to capture the amount of “information” in a variablé. The idea is that the information
conveyed by a value of X is log, (p(z)): likely values transmit less information. The
entropy is then the expectation of informatiaid( X ) = E[p(X)]. The entropy of a variable
X is zero iff we are practically certain about the valueXof that is, iff for some value’,
we havep(z’) = 1. Very little is transmitted by sending the result of a triattwX', because
after all we know that’ will obtain with probability one.

Suppose that a person observes a variablgith three values for a while, and then declares:
“The entropy of this variable is very low, because | receigeplittle information by reading
X in fact, the entropy ofX is smaller than or equal tb/2.” The credal set containing all
distributions forX such thatH (X) < 1/2 is depicted in Figure 5. This credal set is not
convex. Also note thaP(x) = 0 and P(z) = 1 for all values ofx.

14 Summary

The discussion so far can be conveniently summarized asaell From a given set of assess-
ments, one then tries to obtain constraints on expectasindgprobabilities of interest, perhaps
reaching the point where a single expectation functionglrobability measure can be selected.
The idea of an “assessment” has been used quite vaguely, smfassessment is simply a linear
or nonlinear equality or inequality involving probabiéi and expectations.

Definition 14.1. A possibility spacé is a set; elements ¢t are calledstates and subsets d
are callecevents

Definition 14.2. A random variablas a functionX : 2 — R. The set of values oK is denoted
by Qx.

Definition 14.3. An expectatiorfunctional £|-] assigns real numbers to random variables, satis-
fying: (EU1) For constants and, if « < X < 3, thena < F[X] < §; (EU2) E[X + Y] =
E[X]+ E[Y].

Definition 14.4. Theith momenbf X is the expectatio’[X*|.Theith central momenof X is
the expectatio®2[(X — F[X])‘]. ThevarianceV [X] of X is second central moment &f. The
covarianceCov(X,Y) of X andY” is the expectatio®[(X — E[X])(Y — E[Y])].

Definition 14.5. A probability measurés a set-functionP(-) from events to real numbers, satis-
fying: (PU1) For any eventl, P(A) > 0; (PU2) P(Q|B) = P(B|B) = 1; (PU3) If AN B =0,
thenP(AU B) = P(A) + P(B).

Definition 14.6. If P(B) > 0, theconditional expectationf X givenBis E[X|B] = E[BX]| /P(B).
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Definition 14.7. 1f P(B) > 0, theconditional probabilityof A givenBis P(A|B) = P(AN B) /P(B).

Definition 14.8. A credal setis a set of probability measureStrict conditioningonly defines
the conditional credal sét” given B whenP(B) > 0; in this caseX is the set of all conditional
measures(-|B). Regular conditioningor simply conditioning only defines the conditional
credal setk given B when P(B) > 0; in this caseK is the set of all conditional measures
P(:|B) such thatP(B) > 0.

Definition 14.9. The lower and upper expectations of variablél are respectivelyE[X] =
infpe F[X] and E[X] = supp i E[X]; thelower andupperprobabilities of eventd are re-
spectivelyP(A) = infpcie P(A) andP(A) = suppe i P(A).

Definition 14.10. Theconditional lowerandconditional uppeexpectations of variabl& given
eventB are respectively[X |B] = infpex E[X|B] andE[X |B] = supp.; F[X|B] whenever
K (X|B) is defined; theconditional upperand conditional lowerprobability of eventA given
eventB are respectively’(A|B) = infpex P(A|B) andP(A|B) = supp,; P(A|B) whenever
K (X|B) is defined.

15 Bibliographic notes

Events and random variables are the basic concepts of plibpé#ieory. Detailed discussions

of these concepts can be found in several excellent texthf®)kl8]. States are also called
elements, points, outcomes, configurations. Usually the sample spaces used for the set of
states; the terrpossibility spacdias been proposed by Walley [22] and seems a more accurate
description. Possibility spaces should not be viewed asl folgects; they are often revised
(enlarged, reduced, modified) when analyzing a problem t8iimerandom variables somewhat
unfortunate as any random variable is actually defined ipdeterministic terms. Other possible
names areandom quantityf2], gamble[22] andbet[11].

The use of identical symbols for events and indicator fumgihas been pionereed by de
Finetti [2]; a nice discussion of this issue is given by PaIf20]. There is another convention
proposed by de Finetti that is quite appealing. His secondexttion is to use the same symlisol
for probability and for expectation; that i8(.X') denotes the expectation of variable However
appealing, this notation may be confusing when mixed w(tk) (for probability mass functions
and densities). For this reason it is not adopted here.

Axioms PU1-PU3 offer a standard approach to probability mitéi spaces [3, 18]; axioms
EU1-EUZ2 are their obvious “expectation version” [23]. Ttaeg adopted here for any possibility
space, finite or infinite. Textbooks usually introduce plulity axioms first, and expectation is
then defined; here the order is reversed (as in de Finettiar{@ Whittle’s [23] books). There
are many reasons to start with expectations. First, expectaare arguably more intuitive from
a practical point of view (they are obviously representingrages). Second, the move to infi-
nite spaces is relatively simple for expectations, but wenyplex for probabilities (particularly
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when conditioning is discussed on infinite spaces). Finatigny applications deal just with
expectations, or are just interested in expectations.

The definition of conditioning follows the usual Kolmogoram theory [3, 13]; that is, no
conditioning on events of zero probability. It would be ket free conditioning from such an
unpleasant constraint.

The three-prisoners problem is described in many articidss@oks [1, 19].

This text emphasizes the need to represent assessmerds tiatyield a single probability
measure. In this case one must employ credal sets. Earladydor credal sets can be found
in work by Good [10], Kyburg [14], Dempster [4, 5], Shafer [2and others. The most vocal
early proponent of general sets of probability measuredeaiq16, 17], who proposed the term
credal stateto indicate a state of uncertainty that can only be tranglait a set of probability
measures. Work by Williams [24, 25, 26], Giron and Rios [9% &tuber [12] offered axiom-
atizations of credal sets. Sets of probability measureg wWesn adopted in the field of robust
Statistics and in a number of approaches to uncertaintymiitie field of Artificial Intelligence.
A solid foundation was concocted by Walley [22] and the tlydwas grown steadily since then.
The device of baricentric coordinates appears alreadyviidwork [17] and is extensively used
in the literature; Lad offers a detailed discussion [15].

The terms “probability mass function” and “joint probatylmass function” can be replaced
by the more general termensity[20, Chapter 3]. The presentation here follows a traditiona
scheme where densities are used for distinct purposes [3].

The literature offers vast material on Markov, Chebyshen aimilar bounds [3, 18, 7],
Frechet bounds [6] and Bonferroni bounds [8].

16 A few exercises

16.1 Two salesmen are trying to sell different products. pitabability that the first salesman
will not sell his products is 0.2. The probability that thesed salesman will not sell his
product is 0.4. What is the probability that neither salesm#l sell anything? What is the
probability that both will sell something? What is the prblhigy that exactly one will not
sell anything?

16.2 There are four pairs of objects in a table. The first tmospeaontain two spoons each.
The third pair contains two pencils. A robot selects a paenttakes the pair and selects
an object from the pair. The probability that any of the p#rselected is 0.25, and the
conditional probability that either object is selectedegiva pair is 0.5.

(a) Suppose the fourth pair contains a spoon and a pencilt M/Hae possibility space?
What is the probability measure on the possibility spacethdfselected object is a
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spoon, what is the probability that the other animal is a sgowell?

(b) Suppose now the fourth pair of objects contaithera spoon and a penair two
pencils. If the selected object is a spoon, what is the lowalbability that the other
object is a spoon as well?

16.3 A doctor has a client that may have a dise@seThe doctor performs a te§t that can
be positive {"+) or negative {'—). The test has sensitivity 909%°(T" + |D) = 0.9) and
specificity 90% P (T — | D) = 0.9).

e From medical journals, the doctor assumes that 20% of thelpbpn have disease
D. DetermineP (D|T+).

e Suppose the doctor does not have statistics about the pigoutart thinks that? (D)
must be larger than 0.01 but smaller than 0.3. Determinerttegvial of values of
P(D|T+). Can the doctor establish the status of the client? Suppesgdctor uses
the interval [0.15, 0.25] foP(D); can he say something definite about the client?

16.4 Two dice are to be thrown; the possibility space costtir 36 possible outcomes. Denote
by W the number of pips turned up on the first die and¥yhe number of pips turned up
on the second die. Definé = W + X andZ = min(W, X).

e Suppose first all 36 possible outcomes are given equal pilapabnd determine
p(Y), p(Z), p(Y, Z) andp(Y'|Z).

e Now suppose the 6 possible valuesbaire given equal probability, with no further
assessments. What is the lower probabiltyy” = 4|2 = 3)?

16.5 Consider a variabl& with 3 possible values, x, andzs, and suppose the following
assessments are givep{z;) < p(za) < p(x3); p(x;) > 1/20 fori € {1,2,3}; and
p(zslze Uzs) < 3/4. Show the credal set determined by these assessmentsderiien
coordinates. Obtain lower and upper bounds for the proiyadil x|z, U z5).

17 More exercises

17.1. Prove thab[X + o] = E[X] + « for any real numbe.

17.2. Prove th&@riangle Inequality

VEX +Y)1] < VEX? + VE[Y?].

(Hint: Note thatE[XY]| < E[|XY|]; apply the Cauchy-Scharwz inequality to show that
E[(X +Y)% < E[X?+ 2y/E[X? E[Y?] + E[Y?] and then note that the last expression
is equal to(\/E[X?2] + \/E[Y?])2.)

34



17.3.

17.4.

17.5.

17.6.

17.7.

Show that for any two eventisand B, the probability that exactly one of them will occur is
P(A)+ P(B)—2P(AnN B). Generalize: show that given any evefits; }, the probability
that exactly one of them obtains is

n

D (=1)HiS .

i=1

(Hint: use an induction argument inspired by the proof ofdreen 2.1 and take expecta-
tions.)

Suppose that events{ B, } are given together with assessmeRt{s3;) (and no other as-
sessments). Prove the following bounds:

max <<Z P(BZ-))> —(n—1), 0) < P(NL, Bi) < min P(B;).

The Kullback-Leibler divergence between distribngP and( is

P
Q(

DIPQ) = Y  P(X=uz)log §23

:Q(X=x)>0

Show thatD(P, Q) > 0.
(Hint: Use Jensen inequality.)

Suppose thagt X) is a non-negative non-decreasing function; show that fer0,

Elg(1X])]
P(X|>t) < ———=. 28
(1X1>0 < =75 (28)
This is a generalization of the Markov inequality. Now calesia binary variabl& with
probability P(X = 1) = ¢t. Show that the Markov inequality is in fact an equality insthi
case. (That is, we cannot improve on Markov inequality withfoirther assumptions on
X.) Construct a variable for which the inequality in Express(28) is an equality (for
fixedt).

Suppose that variah} assumes integer values franto k£. Show that

E[X]=) P(X >1i). (29)

1=0

Now show: E[X] > 3% / P(X > i).
(Hint: write X as a sum of indicator functions.)
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