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PRECISE PROBABILITY MODELS
MASS FUNCTIONS AND EXPECTATIONS

Assume we are uncertain about:
• the value or a variable X
• in a set of possible values X .

This is usually modelled by a probability mass function p on X :

p(x)≥ 0 and ∑
x∈X

p(x) = 1;

With p we can associate an expectation operator Ep:

Ep(f ) := ∑
x∈X

p(x)f (x) where f : X → R.

If A⊆X is an event, then its probability is given by

Pp(A) = ∑
x∈A

p(x) = Ep(IA).
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THE SIMPLEX OF ALL PROBABILITY MASS FUNCTIONS

Consider the simplex ΣX of all mass functions on X :

ΣX :=

{
p ∈ RX

+ : ∑
x∈X

p(x) = 1

}
.

b

c
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ΣX

(0,1,0)

(0,0,1)

(1,0,0)

b

c

a

ΣX

pu



IMPRECISE IMMEDIATE
PREDICTIONS

GDC,EQ,FH

IMPRECISE
PROBABILITIES

PRECISE PROBABILITY
TREES

HUYGENS’S TREE

IMPRECISE
PROBABILITY TREES

IMPRECISE MARKOV
CHAINS

PERRON–FROBENIUS
THEOREM

FIRST PASSAGE

TOWARDS CREDAL
NETS

LITERATURE

PRECISE PROBABILITY MODELS
GEOMETRICAL INTERPRETATION OF EXPECTATION

ASSESSMENTS LEAD TO CONSTRAINTS
Specifying an expectation E(f ) for a map f : X → R

∑
x∈X

p(x)f (x) = E(f )

imposes a linear constraint on the possible values for p in ΣX .

It corresponds to intersecting the simplex ΣX with a hyperplane,
whose direction depends on f :

b

c

a

ΣX
E(2I{b}− I{c}) = 0

E(I{a}) = 1/2
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LINEAR INEQUALITY CONSTRAINTS

MORE FLEXIBLE ASSESSMENTS
Impose linear inequality constraints on p in ΣX :

E(f )≤ ∑
x∈X

p(x)f (x) or ∑
x∈X

p(x)f (x)≤ E(f ).

Corresponds to intersecting ΣX with affine semi-spaces:

b

c

a

ΣX
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IMPRECISE PROBABILITY MODELS
CREDAL SETS

Any such number of assessments leads to a credal set M .

DEFINITION
A credal set M is a convex closed subset of ΣX .
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IMPRECISE PROBABILITY MODELS
LOWER AND UPPER EXPECTATIONS

b

c

a

ΣX

E(I{c}) = 1/4

E(I{c}) = 4/7

EQUIVALENT MODEL
Consider the set L (X ) = RX of all real-valued maps on X .
We define two real functionals on L (X ): for all f : X → R

EM (f ) = min
{

Ep(f ) : p ∈M
}

lower expectation

EM (f ) = max
{

Ep(f ) : p ∈M
}

upper expectation.

Observe that [conjugacy]

EM (f ) =−EM (−f ).
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IMPRECISE PROBABILITY MODELS
BASIC PROPERTIES OF UPPER EXPECTATIONS

DEFINITION
We call a real functional E on L (X ) an upper expectation if it
satisfies the following properties:
For all f and g in L (X ) and all real λ ≥ 0:

1 E(f )≤max f [boundedness];
2 E(f +g)≤ E(f )+E(g) [sub-additivity];
3 E(λ f ) = λE(f ) [non-negative homogeneity].

THEOREM (OTHER PROPERTIES)
Let E be an upper expectation, with conjugate lower expectation
E. Then for all real numbers µ and all f and g in L (X ):

1 E(f )≤ E(f );
2 E(f )+E(g)≤ E(f +g)≤ E(f )+E(g)≤ E(f +g)≤ E(f )+E(g);
3 E(f + µ) = E(f )+ µ;
4 E(|f |)≥ |E(f )| and E(|f |)≥ |E(f )|.
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IMPRECISE PROBABILITY MODELS
LOWER ENVELOPE THEOREM

THEOREM (LOWER ENVELOPE THEOREM)
A real functional E is an upper expectation if and only if it is the
upper envelope of some credal set M .

PROOF.
Use M =

{
p ∈ ΣX : (∀f ∈L (X ))(Ep(f )≤ E(f ))

}
.
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DISCRETE-TIME UNCERTAIN PROCESSES
PRECISE PROBABILITY TREES

We consider an uncertain process with variables X1, X2, . . . , Xn,
. . . assuming values in a finite set of states X .

This leads to a standard event tree with nodes

s = (x1,x2, . . . ,xn), xk ∈X , n≥ 0.

The standard event tree becomes a probability tree by attaching
to each node s a local probability mass function ps on X with
associated expectation operator Es.
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PRECISE PROBABILITY TREES

a

(a,a)
(a,a,a)

(a,a,b)

(a,b)
(a,b,a)

(a,b,b)

b

(b,a)
(b,a,a)

(b,a,b)

(b,b)
(b,b,a)

(b,b,b)

X 1

X 2

X 3

The standard event tree becomes a probability tree by attaching
to each node s a local probability mass function ps on X with
associated expectation operator Es.
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(a,a,b)

(a,b)
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PRECISE PROBABILITY TREES
CALCULATING GLOBAL EXPECTATIONS FROM LOCAL ONES

Consider a function g : X n→ R of the first n variables:

g = g(X1,X2, . . . ,Xn)

We want to calculate its expectation E(g|s) in s = (x1, . . . ,xk).

THEOREM (LAW OF ITERATED EXPECTATION)
Suppose we know E(g|s,x) for all x ∈X , then we can calculate
E(g|s) by backwards recursion using the local model ps:

E(g|s) = Es︸︷︷︸
local

(E(g|s, ·)) = ∑
x∈X

ps(x)E(g|s,x).

s

(s,b)

(s,a)

psE(g|s) = ps(a)E(g|s,a)+ps(b)E(g|s,b)

E(g|s,a)

E(g|s,b)
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PRECISE PROBABILITY TREES
CALCULATING GLOBAL EXPECTATIONS FROM LOCAL ONES

All expectations E(g|x1, . . . ,xk) in the tree can be calculated from
the local models as follows:

1 start in the final cut X n and let:

E(g|x1,x2, . . . ,xn) = g(x1,x2, . . . ,xn);

2 do backwards recursion using the Law of Iterated
Expectation:

E(g|x1, . . . ,xk) = E(x1,...,xk)︸ ︷︷ ︸
local

(E(g|x1, . . . ,xk, ·))

3 go on until you get to the root node �, where:

E(g|�) = E(g).
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EXERCISE
EVENT TREES

1 Draw the event tree corresponding to three successive flips
of a coin (the possible outcomes are heads and tails). Label
all situations unambiguously. Differentiate between the root,
terminal situations, and intermediate situations.

2 Would you draw a different tree for the successive flips of
three different coins?

3 Draw, on the event tree, the cuts corresponding to the
following stopping rules:

• Stop after one flip.
• Stop after two flips or as soon as heads has come up.
• Stop when both faces have come up or after the last of the

three coin flips.
4 Identify the following events on the event tree (i.e., indicate

the corresponding terminal nodes):
• The result of the first flip is heads.
• There are two consecutive identical flips.
• The first two flips are identical.

Which of these events can be identified with a unique
situation (i.e., a not necessarily terminal situation)?
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HOMEWORK PROBLEMS
EVENT TREES

1 Draw the event tree corresponding to
A throwing a six faced die (outcomes 1 to 6),
B followed by again throwing a six-faced die when the outcome

is 1 and a four-faced die (outcomes 1 to 4) when the outcome
is 5,

C and finally flipping a coin when the sum of the first two
outcomes is 7 or more.

2 Identify the terminal situations. Do they form a cut (of the
root)?

3 How many and which cuts are there of the situation ‘1’?
4 For each non-terminal situation, write down the number of

children, and then—by using this information—find the
number of descendants per node in an efficient manner.
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1 Check that the following is a probability tree:

a

(a,b)
0.4

(a,c)0.60.1

b
0.2

c

(c,a)
0.5

(c,b)0.5

0.7

2 Terminal situations containing a vowel yield 1, all others −1.
Calculate the expected return in two ways:

• by forward propagation of probabilities, i.e., using the product
rule to calculate the probabilities for each of the terminal
situations;

• by backward-propagation of expectations; write these
expectations down in the tree.



IMPRECISE IMMEDIATE
PREDICTIONS

GDC,EQ,FH

IMPRECISE
PROBABILITIES

PRECISE PROBABILITY
TREES

HUYGENS’S TREE

IMPRECISE
PROBABILITY TREES

IMPRECISE MARKOV
CHAINS

PERRON–FROBENIUS
THEOREM

FIRST PASSAGE

TOWARDS CREDAL
NETS

LITERATURE

THE FIRST PROBABILITY TREE?
CHRISTIAAN HUYGENS, Van Rekeningh in Spelen van Geluck (1656–1657)
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HUYGENS’S PROBLEM
A MORE MODERN VERSION OF HUYGENS’S PROBABILITY TREE

0,0

0,1
0,2q

1,1pq

1,0
1,1q

2,0p

p
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ADDING THE PROBABILITIES TO THE PICTURE

0,0

0,1
0,2q

1,1pq

1,0
1,1q

2,0p

p

x

0

x

x

1
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HUYGENS’S SOLUTION
EXPECTATIONS ARE CALCULATED BACKWARD

0,0

0,1
0,2q

1,1pq

1,0
1,1q

2,0p

p

p(p+qx)+q(px)

px

p+qx

0

x

x

1
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HUYGENS’S SOLUTION
AN ELEGANT SOLUTION

So we get
x = p(p+qx)+q(px)

and this leads to:

x =
p2

p2 +q2 .

The general solution when the score difference is n:

x =
pn

pn +qn .
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HOMEWORK PROBLEMS
PROBABILITY TREES

1 Draw the probability tree for the three-step problem of
points and calculate, as was done for the two-step case, by
identifying equivalent situations and solving for the root
expectation.

2 Do the same for the four-step problem of points, but now
exploit the solution found for the two-step problem of points.

3 Find the solution to the problem of points for any number of
steps m.
Hint: Use the Law of Iterated Expectation to find the
(second order) difference equation that expresses the
relationship between the expectations in the tree as a
function of the difference of points for each player. Identify
the border conditions to be imposed, and then solve the
difference equation.
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IMPRECISE PROBABILITY MODELS
SETS OF MASS FUNCTIONS

MAJOR RESTRICTIVE ASSUMPTION
Until now, we have assumed that we have sufficient information
in order to specify, in each node s, a probability mass function ps
on the set X of possible values for the next state.

s

(s,b)ps(b)

(s,a)ps(a)

ps

MORE GENERAL UNCERTAINTY MODELS
We consider credal sets as more general uncertainty models:
closed convex subsets of ΣX .
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IMPRECISE PROBABILITY TREES
DEFINITION AND INTERPRETATION

DEFINITION
An imprecise probability tree is a probability tree where in each
node s the local uncertainty model is an imprecise probability
model Ms, or equivalently, its associated upper expectation Es:

Es(f ) = max
{

Ep(f ) : p ∈Ms
}

for all real maps f on X .

An imprecise probability tree can be seen as an infinity of
compatible precise probability trees: choose in each node s a
probability mass function ps from the set Ms.
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a

(a,a)
(a,a,a)

(a,a,b)

(a,b)
(a,b,a)

(a,b,b)

b

(b,a)
(b,a,a)

(b,a,b)

(b,b)
(b,b,a)

(b,b,b)

M�

Ma

Mb

M(a,a)

M(b,b)

M(b,a)

M(a,b)

An imprecise probability tree can be seen as an infinity of
compatible precise probability trees: choose in each node s a
probability mass function ps from the set Ms.
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DEFINITION AND INTERPRETATION

DEFINITION
An imprecise probability tree is a probability tree where in each
node s the local uncertainty model is an imprecise probability
model Ms, or equivalently, its associated upper expectation Es:

Es(f ) = max
{

Ep(f ) : p ∈Ms
}

for all real maps f on X .

An imprecise probability tree can be seen as an infinity of
compatible precise probability trees: choose in each node s a
probability mass function ps from the set Ms.
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ASSOCIATED LOWER AND UPPER EXPECTATIONS

For each real map g = g(X1, . . . ,Xn), each node s = (x1, . . . ,xk),
and each such compatible precise probability tree, we can
calculate the expectation

E(g|x1, . . . ,xk)

using the backwards recursion method described before.

By varying over each compatible probability tree, we get a
closed real interval:

[E(g|x1, . . . ,xk),E(g|x1, . . . ,xk)]

We want a better, more efficient method to calculate these lower
and upper expectations E(g|x1, . . .xk) and E(g|x1, . . . ,xk).
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THE LAW OF ITERATED EXPECTATION

THEOREM (LAW OF ITERATED EXPECTATION)
Suppose we know E(g|s,x) for all x ∈X , then we can calculate
E(g|s) by backwards recursion using the local model Es:

E(g|s) = Es︸︷︷︸
local

(E(g|s, ·)) = max
ps∈Ms

∑
x∈X

ps(x)E(g|s,x).

s

(s,b)

(s,a)

MsE(g|s) = Es(E(g|s, ·))

E(g|s,a)

E(g|s,b)

The complexity of calculating the E(g|s), as a function of n, is
therefore essentially the same as in the precise case!
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1 Draw the imprecise probability tree corresponding to
flipping two coins in succession:
A the information available about the first coin flip leads us to

assign lower probability 1/4 to both heads and tails;
B the second coin flip is considered to be fair.

2 Calculate the lower and upper probability of getting
• heads exactly once, and
• heads at least once.

Hint: First add the ‘yields’ corresponding to the indicator
functions of these events to the terminal nodes and then
use backwards recursion.
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IMPRECISE PROBABILITY TREES

1 Check that the following is an imprecise probability tree.

a

(a,b)
[.3, .4]

(a,c)[.6, .7]

b

c

(c,a)

(c,b)

(1− ε)Epu + ε min

b

c

a

Here, ε ∈ [0,1] and pu = ( 1
2 , 1

2 ).
2 Again, terminal situations containing a vowel yield 1, the

others −1. Calculate the lower and upper expected return
using backward recursion. Write these lower and upper
expectations down in the tree.
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DEFINITION
The uncertain process is a stationary precise Markov chain
when all Ms are singletons (precise), and

1 M� = {m1},
2 the Markov Condition is satisfied:

M(x1,...,xn) = {q(·|xn)}.

For each x ∈X , the transition mass function q(·|x) corresponds
to an expectation operator:

E(f |x) = ∑
z∈X

q(z|x)f (z).
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a

(a,a)
(a,a,a)

(a,a,b)

(a,b)
(a,b,a)

(a,b,b)

b

(b,a)
(b,a,a)

(b,a,b)

(b,b)
(b,b,a)

(b,b,b)

m1

q(·|a)

q(·|b)

q(·|a)

q(·|b)

q(·|a)

q(·|b)

For each x ∈X , the transition mass function q(·|x) corresponds
to an expectation operator:

E(f |x) = ∑
z∈X

q(z|x)f (z).



IMPRECISE IMMEDIATE
PREDICTIONS

GDC,EQ,FH

IMPRECISE
PROBABILITIES

PRECISE PROBABILITY
TREES

HUYGENS’S TREE

IMPRECISE
PROBABILITY TREES

IMPRECISE MARKOV
CHAINS

PERRON–FROBENIUS
THEOREM

FIRST PASSAGE

TOWARDS CREDAL
NETS

LITERATURE

PRECISE MARKOV CHAINS
DEFINITION

DEFINITION
The uncertain process is a stationary precise Markov chain
when all Ms are singletons (precise), and

1 M� = {m1},
2 the Markov Condition is satisfied:

M(x1,...,xn) = {q(·|xn)}.

For each x ∈X , the transition mass function q(·|x) corresponds
to an expectation operator:

E(f |x) = ∑
z∈X

q(z|x)f (z).
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TRANSITION OPERATORS

DEFINITION
Consider the linear transformation T of L (X ), called transition
operator:

T: L (X )→L (X ) : f 7→ Tf

where Tf is the real map given by, for any x ∈X :

Tf (x) := E(f |x) = ∑
z∈X

q(z|x)f (z)

T is the dual of the linear transformation with Markov matrix M,
with elements Mxy := q(y|x).

Then the Law of Iterated Expectation yields:

En(f ) = E1(Tn−1f ), and dually, mT
n = mT

1 Mn−1.

Complexity is linear in the number of time steps n. Actually, it is
of order log2 n using the square-and-multiply algorithm.
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TRANSITION OPERATORS

DEFINITION
Consider the linear transformation T of L (X ), called transition
operator:

T: L (X )→L (X ) : f 7→ Tf

where Tf is the real map given by, for any x ∈X :

Tf (x) := E(f |x) = ∑
z∈X

q(z|x)f (z)

T is the dual of the linear transformation with Markov matrix M,
with elements Mxy := q(y|x).

Then the Law of Iterated Expectation yields:

En(f ) = E1(Tn−1f ), and dually, mT
n = mT

1 Mn−1.

Complexity is linear in the number of time steps n. Actually, it is
of order log2 n using the square-and-multiply algorithm.
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Consider the following partial probability tree characterising a
precise Markov chain:

s

(s,a)

(s,a,a)
0.5

(s,a,b)
0.5

(s,a,c)0

(s,b)

(s,b,a)
0.5

(s,b,b)
0

(s,b,c)0.5

(s,c)

(s,c,a)
0

(s,c,b)
0.5

(s,c,c)0.5



IMPRECISE IMMEDIATE
PREDICTIONS

GDC,EQ,FH

IMPRECISE
PROBABILITIES

PRECISE PROBABILITY
TREES

HUYGENS’S TREE

IMPRECISE
PROBABILITY TREES

IMPRECISE MARKOV
CHAINS

PERRON–FROBENIUS
THEOREM

FIRST PASSAGE

TOWARDS CREDAL
NETS

LITERATURE

EXERCISE
PRECISE MARKOV CHAINS

1 Write down the corresponding Markov matrix M.
2 Given the initial mass function described by m1 = (0 1 0)T ,

calculate m2, m3, m4 and m5.
3 Given the gamble f = (0 1 −1)T , calculate Tf , T2f , T3f and

T4f .
4 Calculate the expectations E1(f ), E2(f ), E3(f ), E4(f ) and

E5(f ) in two ways: using En(f ) = mT
n f and En(f ) = mT

1 (Tn−1f ).
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PRECISE MARKOV CHAINS

Consider your results m2, m3, m4 and m5, and Tf , T2f , T3f and
T4f for the previous exercise.

1 Make an informed guess about what the equilibrium
distribution will be on the basis of the observed evolution
and the symmetries in M. Check your guess.

2 Make an informed guess about what limn→∞ Tnf will be.
Give a proof using induction.



IMPRECISE IMMEDIATE
PREDICTIONS

GDC,EQ,FH

IMPRECISE
PROBABILITIES

PRECISE PROBABILITY
TREES

HUYGENS’S TREE

IMPRECISE
PROBABILITY TREES

IMPRECISE MARKOV
CHAINS

PERRON–FROBENIUS
THEOREM

FIRST PASSAGE

TOWARDS CREDAL
NETS

LITERATURE

IMPRECISE MARKOV CHAINS
DEFINITION

DEFINITION
The uncertain process is a stationary imprecise Markov chain
when the Markov Condition is satisfied:

M(x1,...,xn) = Q(·|xn).

An imprecise Markov chain can be seen as an infinity of
probability trees.

For each x ∈X , the local transition model Q(·|x) corresponds to
lower and upper expectation operators:

E(f |x) = min
{

Ep(f ) : p ∈Q(·|x)
}

E(f |x) = max
{

Ep(f ) : p ∈Q(·|x)
}
.
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a

(a,a)
(a,a,a)

(a,a,b)

(a,b)
(a,b,a)

(a,b,b)

b

(b,a)
(b,a,a)

(b,a,b)

(b,b)
(b,b,a)

(b,b,b)

M1

Q(·|a)

Q(·|b)

Q(·|a)

Q(·|b)

Q(·|a)

Q(·|b)

An imprecise Markov chain can be seen as an infinity of
probability trees.

For each x ∈X , the local transition model Q(·|x) corresponds to
lower and upper expectation operators:

E(f |x) = min
{

Ep(f ) : p ∈Q(·|x)
}

E(f |x) = max
{

Ep(f ) : p ∈Q(·|x)
}
.
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DEFINITION
The uncertain process is a stationary imprecise Markov chain
when the Markov Condition is satisfied:

M(x1,...,xn) = Q(·|xn).

An imprecise Markov chain can be seen as an infinity of
probability trees.

For each x ∈X , the local transition model Q(·|x) corresponds to
lower and upper expectation operators:

E(f |x) = min
{

Ep(f ) : p ∈Q(·|x)
}

E(f |x) = max
{

Ep(f ) : p ∈Q(·|x)
}
.
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LOWER AND UPPER TRANSITION OPERATORS

DEFINITION
Consider the non-linear transformations T and T of L (X ),
called lower and upper transition operators:

T: L (X )→L (X ) : f 7→ Tf

T: L (X )→L (X ) : f 7→ Tf

where the real maps Tf and Tf are given by:

Tf (x) := E(f |x) = min
{

Ep(f ) : p ∈Q(·|x)
}

Tf (x) := E(f |x) = max
{

Ep(f ) : p ∈Q(·|x)
}

Then the Law of Iterated Expectation yields:

En(f ) = E1(Tn−1f ) and En(f ) = E1(Tn−1f ).

Complexity is still linear in the number of time steps n.
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LOWER AND UPPER TRANSITION OPERATORS

DEFINITION
Consider the non-linear transformations T and T of L (X ),
called lower and upper transition operators:

T: L (X )→L (X ) : f 7→ Tf

T: L (X )→L (X ) : f 7→ Tf

where the real maps Tf and Tf are given by:

Tf (x) := E(f |x) = min
{

Ep(f ) : p ∈Q(·|x)
}

Tf (x) := E(f |x) = max
{

Ep(f ) : p ∈Q(·|x)
}

Then the Law of Iterated Expectation yields:

En(f ) = E1(Tn−1f ) and En(f ) = E1(Tn−1f ).

Complexity is still linear in the number of time steps n.
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Given is the following partial imprecise probability tree
characterising an imprecise Markov chain:

s

(s,a)

(s,a,a)

(s,a,b)

(s,a,c)

(s,b)

(s,b,a)

(s,b,b)

(s,b,c)

(s,c)

(s,c,a)

(s,c,b)

(s,c,c)

b

c

a
pu

b

c

a

pu

b

c

a
pu

Here pu = ( 1
3 , 1

3 , 1
3 ).
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EXERCISE
IMPRECISE MARKOV CHAINS

1 Given the gamble f = (0 1 −1)T , calculate [Tf ,Tf ] and
[T2f ,T2f ].
Hint: It may be easiest to do the backwards recursion
calculations iteratively in the partial tree.

2 Given the initial mass function described by m1 = (0 1 0)T ,
calculate the lower and upper expectations [E1(f ),E1(f )],
[E2(f ),E2(f )] and [E3(f ),E3(f )].

3 Based on [T2f ,T2f ], what bounds can you put on
limn→∞[En(f ),En(f )]?
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1 How would you calculate lower and upper mass functions
after n steps, i.e., which gambles would you need to
calculate the different components of the corresponding
vector?

2 For general imprecise Markov chains, do the lower and
upper mass functions after n steps fully characterise the
uncertainty about the state after n steps? Why (not)?

3 Investigate the complexity of working with precise and
imprecise Markov chains; focus on the number and type of
computations and memory necessary for calculating the
expectation or lower expectation of a gamble after n steps
for m-state chains.
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RANDOM WALKS
AN EXAMPLE WITH A TWO-ELEMENT STATE SPACE

Consider a two-element state space:

X = {a,b},

with upper expectation E1 for the first state, and for each
(x1, . . . ,xn) ∈ {a,b}n, with ε ∈ [0,1],

M(x1,...,xn) = Q(·|xn) = (1− ε){q(·|xn)}+ εΣ{a,b}

or in other words, for the upper transition operator

T = (1− ε)T+ ε max

where T is the linear transition operator determined by

M :=
[

TI{a}(a) TI{b}(a)
TI{a}(b) TI{b}(b)

]
=
[

q(a|a) q(b|a)
q(a|b) q(b|b)

]
.
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STATIONARY DISTRIBUTION

It is a matter of simple verification that for n≥ 1 and f ∈L (X ):

Tnf = (1− ε)nTnf + ε

n−1

∑
k=0

(1− ε)k maxTkf ,

and therefore, using the Law of Iterated Expectation,

En+1(f ) = E1(Tnf ) = (1− ε)nE1(Tnf )+ ε

n−1

∑
k=0

(1− ε)k maxTkf .

If we now let n→ ∞, we see that the limit exists and is
independent of the initial upper expectation E1:

E∞(f ) = ε

∞

∑
k=0

(1− ε)k maxTkf .
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SPECIAL CASES

CONTAMINATED RANDOM WALK
When

Tf (a) = Tf (b) = 1/2[f (a)+ f (b)], i.e., M =
[

1/2 1/2
1/2 1/2

]
then we find that

E∞(f ) = (1− ε)1/2[f (a)+ f (b)]+ ε max f .

0 11/2

ε
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SPECIAL CASES

CONTAMINATED CYCLE
When

Tf (a) = f (b) and Tf (b) = f (a), i.e., M =
[

0 1
1 0

]
then we find that

E∞(f ) = max f .

0 1
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LOWER AND UPPER MASS FUNCTIONS
ANOTHER EXAMPLE WITH X = {a,b,c}

[
TI{a} TI{b} TI{c}

]
=

q(a|a) q(b|a) q(c|a)
q(a|b) q(b|b) q(c|b)
q(a|c) q(b|c) q(c|c)

= 1/200

 9 9 162
144 18 18

9 162 9



[
TI{a} TI{b} TI{c}

]
=

q(a|a) q(b|a) q(c|a)
q(a|b) q(b|b) q(c|b)
q(a|c) q(b|c) q(c|c)

= 1/200

 19 19 172
154 28 28
19 172 19
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LOWER AND UPPER MASS FUNCTIONS
ANOTHER EXAMPLE WITH X = {a,b,c}

n = 1 n = 2 n = 3 n = 4

n = 5 n = 6 n = 7 n = 8

n = 9 n = 10 n = 22 n = 1000
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NON-LINEAR PERRON–FROBENIUS THEOREM
GENERALISING THE LINEAR CASE

THEOREM (DE COOMAN, HERMANS AND
QUAEGHEBEUR, 2008)
Consider a stationary imprecise Markov chain with finite state
set X and an upper transition operator T. Suppose that T is
regular, meaning that there is some n > 0 such that
minTnI{x} > 0 for all x ∈X . Then for every initial upper
expectation E1, the upper expectation En = E1 ◦Tn−1 for the
state at time n converges point-wise to the same upper
expectation E∞:

lim
n→∞

En(h) = lim
n→∞

E1(Tn−1h) := E∞(h)

for all h in L (X ). Moreover, the corresponding limit upper
expectation E∞ is the only T-invariant upper expectation on
L (X ), meaning that E∞ = E∞ ◦T.
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MEAN FIRST PASSAGE TIMES
DEFINITION

Let the random process τxy be the first time n > 0 such that
Xn+1 = y, if the process starts out in X1 = x.

We are interested in the lower and upper mean first passage
times:

Mxy = E(τxy|x) and Mxy = E(τxy|x).

If x = y, we call

Rx := Mxx = E(τxx|x) and Rx := Mxx = E(τxx|x)

lower and upper mean recurrence times.
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MEAN FIRST PASSAGE TIMES
NON-LINEAR EQUATIONS FOR MEAN FIRST PASSAGE TIMES

Now for any trajectory (x,x2,x3, . . .) starting in x:

τxy(x,x2,x3, . . .) =

{
1 ; x2 = y
1+ τx2y(x2,x3, . . .) ; x2 6= y

which is a recursive relation, so if we use the Law of Iterated
Expectation, stationarity and the Markov Property, we are led to
the non-linear equations:

M·y = 1+T[(1−δ·y)M·y] and M·y = 1+T[(1−δ·y)M·y].
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MEAN FIRST PASSAGE TIMES
EXAMPLES

We find after solving the non-linear equations that:

CONTAMINATED RANDOM WALK

Ra = Rb = Mab = Mba =
2

1+ ε

Ra = Rb = Mab = Mba =
2

1− ε
.

CONTAMINATED CYCLE

Ra = Rb = 2− ε and Mab = Mba = 1

Ra = Rb =
2− ε

1− ε
and Mab = Mba =

1
1− ε

.
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A SPECIAL CREDAL NETWORK
UNDER EPISTEMIC IRRELEVANCE

An imprecise Markov chain can also be depicted as follows:

X1 X2 X3 . . . Xn−1 Xn

INTERPRETATION OF THE GRAPH
Conditional on Xk we have that X1, . . . , Xk−1 are epistemically
irrelevant to Xk+1, . . . , Xn:

E(f (Xk+1, . . . ,Xn)|X1, . . . ,Xk−1,Xk) = E(f (Xk+1, . . . ,Xn)|Xk)

MORE GENERALLY, FOR A CREDAL NET
Conditionally on the parents, the non-parent non-descendants
of each node are epistemically irrelevant to it.
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SEPARATION IN CREDAL NETS
UNDER EPISTEMIC IRRELEVANCE

I1 I2 T I1 I2 T

FIGURE: I2 separates T from I1.

I1 I2 T

FIGURE: I2 doesn’t separate T from I1.

CONCLUSION
For a variable T to be separated from I2 by a variable I1, arrows
should point from I2 to T.
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A SPECIAL CASE
HIDDEN MARKOV CHAINS

X1

O1

X2

O2

X3

O3

. . . Xn−1

On−1

Xn

On
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