## Algorithms for Imprecise Probability Part I

Fabio G. Cozman - Cassio P. de Campos

fgcozman@usp.br - cassiopc@gmail.com



#### Part I: algorithms without independence (this talk).

# Part II: algorithms with independence (next talk, by Cassio).

## **Overview (some more)**

- Part I: algorithms without independence (this talk).
  - 1. The basic linear fractional program.
  - 2. Dealing with probabilities that may be zero.
  - 3. Special important cases: neighborhoods, capacities, and the like.
  - 4. Decision making.
- Part II: algorithms with independence (next talk, by Cassio).

## Easy warm-up

- Possibility space  $\Omega$  with states  $\omega$ ; events are subsets of  $\Omega$ .
- Random variables and indicator functions.
  - Bounded function  $X : \Omega \to \Re$ .
  - Special type: indicator function of event A:
    - Denoted by A as well.
    - $A(\omega) = 1$  if  $\omega \in A$ ; 0 otherwise.

#### **Axioms for expectations**

EU1 If  $\alpha \leq X \leq \beta$ , then  $\alpha \leq E[X] \leq \beta$ . EU2 E[X+Y] = E[X] + E[Y].

Some consequences:

- 1.  $X \ge Y \Rightarrow E[X] \ge E[Y]$ . 2.  $E[x, Y] \longrightarrow Y$
- **2.**  $E[\alpha X] = \alpha X$ .

#### **Probabilities**

• The probability P(A) is E[A].

Properties of a probability measure:
PU1  $P(A) \ge 0$ .
PU2  $P(\Omega) = 1$ .
PU3 If  $A \cap B = \emptyset$ ,  $P(A \cup B) = P(A) + P(B)$ .

## **Conditional expectations/probabilities**

• Conditional expectation of X given B,

$$E[X|B] = \frac{E[BX]}{P(B)} \quad \text{ if } P(B) > 0.$$

#### **•** Bayes rule: If P(B) > 0, then

$$P(A|B) = \frac{P(A \cap B)}{P(B)}.$$

## **Algorithms: Boole (1854)**

- **Propositional formula**  $\phi$ :
  - 1. propositions
  - 2. operators ( $\neg$ ,  $\land$ ,  $\lor$ ,  $\rightarrow$ ).
- Take  $\Omega$  as the set of  $2^n$  truth assignments for n propositions.
- Interpret  $P(\phi) \ge \alpha$  as

$$\sum_{\omega \models \phi} P(\omega) \ge \alpha.$$

## **Probabilistic satisfiability**

- Siven m assessments, is there a probability measure over  $\Omega$ ?
  - Each assessments is a linear constraint.
  - Must satisfy  $P(\omega) \ge 0$  and  $\sum_{\omega \in \Omega} P(\omega) = 1$ .
- This is a *linear program*!
  - Derived first by Hailperin (1965).
- Somewhat surprisingly, NP-complete problem.
  - The same as usual satisfiability (!?!).
- Note: solution is at extreme points.



Build linear program:

- $P(A) \ge \alpha.$
- $P(B) = \beta.$

Can you give bounds for  $P(A \land B \land C)$ ?

#### **Solution**

•  $P(A) \ge \alpha, B \to C, P(B) = \beta.$ 

#### Define:

| $\omega_i$ | A | B | C |
|------------|---|---|---|
| 1          | 0 | 0 | 0 |
| 2          | 0 | 0 | 1 |
| 3          | 0 | 1 | 0 |
| 4          | 0 | 1 | 1 |
| 5          | 1 | 0 | 0 |
| 6          | 1 | 0 | 1 |
| 7          | 1 | 1 | 0 |
| 8          | 1 | 1 | 1 |

Then  $\omega_3$  and  $\omega_7$  are impossible; and

$$p_5 + p_6 + p_8 = \alpha$$
,  $p_4 + p_8 = \beta$ ,  $p_i \ge 0$ ,  $\sum_i p_i = 1$ .

## de Finetti's fundamental theorem

- Given m assessments over events  $H_i$ , is there a probability measure over them?
- And how about the allowed assessments over another event  $H_0$ ?
- Theorem:  $P(H_0)$  belongs to an interval with constraints given by other assessments
  - (and the usual  $P(\omega) \ge 0$  and  $\sum_{\omega \in \Omega} P(\omega) = 1$ ).
- This is a linear program.
  - Well, this is the same linear program as before (Gilio (1980)).

Coletti and Scozzafava (1999).

- **•** Take  $H_1$ ,  $H_2$ ,  $H_3$ .
- Assume  $H_3 \subset H_1^c \cap H_2$ .
- Assessments  $P(H_1) = 1/2$ ,  $P(H_2) = 1/5$ ,  $P(H_3) = 1/8$ .

Build linear program.

Coletti and Scozzafava (1999).

- **•** Take  $H_1$ ,  $H_2$ ,  $H_3$ .
- Assume  $H_3 \subset H_1^c \cap H_2$ .
- Assessments  $P(H_1) = 1/2$ ,  $P(H_2) = 1/5$ ,  $P(H_3) = 1/8$ . Build linear program.

● 
$$x_1 = P(A_1); A_1 = H_1 \cap H_2 \cap H_3^c.$$

• 
$$x_2 = P(A_2); A_2 = H_1 \cap H_2^c \cap H_3^c$$
.

●  $x_3 = P(A_3); A_3 = H_1^c \cap H_2 \cap H_3^c.$ 

• 
$$x_4 = P(A_4); A_4 = H_1^c \cap H_2 \cap H_3.$$

• 
$$x_5 = P(A_5); A_5 = H_1^c \cap H_2^c \cap H_3^c$$
.

Coletti and Scozzafava (1999).

- **•** Take  $H_1$ ,  $H_2$ ,  $H_3$ .
- Assume  $H_3 \subset H_1^c \cap H_2$ .

▲ Assessments  $P(H_1) = 1/2$ ,  $P(H_2) = 1/5$ ,  $P(H_3) = 1/8$ .

 Build linear program.



## **Conditional probabilities**

- Assessment  $P(A|B) \ge \alpha$ .
- Transform to (Hailperin (1965) and many others later):

 $P(A \wedge B) \ge \alpha P(B) \,.$ 

- Or use the language of events.
- Still a linear program!

Coletti and Scozzafava (1999).

- **•** Take  $H_1$ ,  $H_2$ ,  $H_3$ .
- Assume  $H_3 \subset H_1^c \cap H_2$ .
- ▶ Assessments  $P(H_1) = 1/2$ ,  $P(H_2) = 1/5$ ,  $P(H_3) = 1/8$ .
- Also,  $P(H_2|H_1 \cup H_2) \ge 1/2$ .

Build linear program.

# **Column generation**

Probabilistic satisfiability is

 $\min 0p$ 

subject to  $Ap \ge \alpha, p \ge 1$ .

- General problem minimizes cp.
- The difficulty is that p has  $2^n$  elements (for a problem with n propositions).
- The usual technique is column generation.
  - That is, generate only those columns of A that are necessary
    - (at any given time, simplex only needs m columns where m is number of lines of A).

## The mechanics of column generation

- Use the revised simplex algorithm.
  - That is, keep only a basis  $(m \times m)$ .
  - Must decide whether to bring a column into the basis.
- Then choose the column using a nonlinear subproblem:
  - Solve  $\min_j c_B A_B^{-1} A_j$ .
  - Note that  $A_j$  contains a set of logical formulas.
  - This is a MAXSAT problem.
  - Replace:

 $X \wedge Y \doteq XY, \quad X \vee Y \doteq X + Y - XY, \quad \neg X \doteq 1 - X.$ 

It can be reduced to linear (integer) programming!

# **Integer programming**

Very useful fact:

- Consider product  $a \times b$ , where
  - $a \in [0, 1]$ .
  - b is either 0 or 1.
- Create a new variable c, replace  $a \times b$  by c and add

 $0 \le c \le b;$ 

$$a - 1 + b \le c \le a.$$

Now solve by linear (integer) programming!

## **PSAT with column generation**

- Best results in the literature: hundreds of propositions, hundreds of assessments (Perron et al 2004), using lots of special tricks.
- There are also a few special cases that are "easy" and several variants, etc.
  - For instance, when formulas can be put in a "tree" structure (Andersen & Pretolani 1999).
  - Also if formulas can be organized in junction trees (van der Gaag 1991).
- (Also, approximation methods based on local search for large problems, but really no guarantees yet...)

#### **Phase transitions?**



## Aside: PPL system

Interface in Python, connects to CPLEX or free linear programming tools (at http://www.pmr.poli.usp.br/ltd/Software/PPL/index.html).

```
>>> s1 = 'a <=> (b?c)'
>>> s1
'a <=> (b?c)'
>>> s2 = PPL.toCNF(s1)
>>> s2
'((?b j a) & (?c j a) & (b j c j ?a))'
>>> PPL.p(s1, 0.5)
>>> s3 = 'd j (e & f) j g'
>>> PPL.p(s3, 0.3, 0.8)
>>> PPL.checkCoherence()
Coherent!
```

Another package by Dickey (see SIPTA Newsletter).

# **Computing conditional probabilities**

• Now suppose we wish  $\underline{P}(A|B) = \min P(A|B)$ .

This is not a linear program (it is a linear fractional program).

- However, it can be solved through linear programming:
  - Charnes-Cooper transformation (similar solutions by White, Snow).
  - Dinkelbach-Jagannathan algorithm (similar solutions by Walley, Lavine).

#### **Charnes-Cooper transformation**

Wish to solve:

$$\min_{p} \frac{\sum_{i} f_{i} \alpha_{i} p_{i}}{\sum_{i} \alpha_{i} p_{i}} \quad \text{s.t. } Ap \ge 0, \sum_{i} p_{i} = 1, p_{i} \ge 0.$$

where 
$$\sum_i \alpha_i p_i > 0$$
.

Change variables to

$$q_i = \frac{p_i}{\sum_i \alpha_i p_i}$$

Now:

$$\min_{q} \sum_{i} f_{i} \alpha_{i} q_{i} \quad \text{s.t. } Aq \ge 0, \sum_{i} \alpha_{i} q_{i} = 1, q_{i} \ge 0.$$

- **•** Take  $H_1, H_2, H_3$ .
- Assume  $H_3 \subset H_1^c \cap H_2$ .
- Assessments  $P(H_1) = 1/2$ ,  $P(H_2) = 1/5$ ,  $P(H_3) = 1/8$ .

Build linear program to compute  $\underline{P}(H_1|H_1 \cup H_2)$ , applying the Charnes-Cooper transformation.

#### **Solution**

▶ Take  $H_1$ ,  $H_2$ ,  $H_3$ , assume  $H_3 \subset H_1^c \cap H_2$ .

▶ Assessments  $P(H_1) = 1/2$ ,  $P(H_2) = 1/5$ ,  $P(H_3) = 1/8$ .

Build linear program to compute  $\underline{P}(H_1|H_1 \cup H_2)$ . First,

 $\min(x_1 + x_2)/(x_1 + x_2 + x_3 + x_4)$  s.t.

$$x_1 + x_2 = 1/2;$$
  $x_1 + x_3 + x_4 = 1/5;$   $x_4 = 1/8;$   $x_i \ge 0;$   $\sum_i x_i = 1.$ 

Then

$$\min(x_1 + x_2)/(x_1 + x_2 + x_3 + x_4)$$
 s.t.

 $x_1/2 + x_2/2 - x_3/2 - x_4/2 - x_5/2 = 0;$   $4x_1/5 - x_2/5 + 4x_3/5 + 4x_4/5 - x_5/5 = 0;$ 

$$-x_1/8 - x_2/8 - x_3/8 + 7x_4/8 - x_5/8 = 0; \quad x_i \ge 0; \quad \sum_i x_i = 1.$$

#### **Solution**

• Take  $H_1$ ,  $H_2$ ,  $H_3$ , assume  $H_3 \subset H_1^c \cap H_2$ .

▶ Assessments  $P(H_1) = 1/2$ ,  $P(H_2) = 1/5$ ,  $P(H_3) = 1/8$ .

Build linear program to compute  $\underline{P}(H_1|H_1 \cup H_2)$ . First,

 $\min(x_1 + x_2)/(x_1 + x_2 + x_3 + x_4)$  s.t.

$$x_1 + x_2 = 1/2;$$
  $x_1 + x_3 + x_4 = 1/5;$   $x_4 = 1/8;$   $x_i \ge 0;$   $\sum_i x_i = 1.$ 

Then

 $\min(y_1 + y_2)$  s.t.

 $y_1/2 + y_2/2 - y_3/2 - y_4/2 - y_5/2 = 0;$   $4y_1/5 - y_2/5 + 4y_3/5 + 4y_4/5 - y_5/5 = 0;$ 

$$-y_1/8 - y_2/8 - y_3/8 + 7y_4/8 - y_5/8 = 0; \quad y_i \ge 0; \quad \sum_{i=1}^4 y_i = 1.$$

## Larger example (based on Jaeger 1994)

Take: AntarticBird  $\rightarrow$  Bird, FlyingBird  $\rightarrow$  Bird, Penguim  $\rightarrow$  Bird, FlyingBird  $\rightarrow$  Flies, Penguim  $\rightarrow \neg$  Flies,  $P(\mathsf{FlyingBird}|\mathsf{Bird}) = 0.95,$ P(AntarticBird|Bird) = 0.01,P(Bird) > 0.2, $P(\mathsf{FlyingBird} \lor \mathsf{Penguim} | \mathsf{AntarticBird}) \ge 0.2,$  $P(\mathsf{Flies}|\mathsf{Bird}) \ge 0.8$ .

Then

 $P(\mathsf{FlyingBird}|\mathsf{Bird} \land \neg\mathsf{AntarticBird}) \in [0.949, 0.960],$  $P(\mathsf{Penguim}|\neg\mathsf{AntarticBird}) \in [0.000, 0.050].$ 

## **Dinkelbach-Jagannathan for probability**

$$\lambda = \min \frac{P(A \cap B)}{P(B)},$$

iff

$$\min\left(P(A \cap B) - \lambda P(B)\right) = 0,$$

assuming P(B) > 0.

- The left side is strictly decreasing function of  $\lambda$ .
- **9** So, we can bracket  $\lambda$ .

## **Dinkelbach-Jagannathan for expectation**

Also,

$$\lambda = \min \frac{E[f(X)B]}{P(B)},$$

#### iff

$$\min\left(E[f(X)B] - \lambda P(B)\right) = 0$$

or, rather,

$$\min E[(f(X) - \lambda)B] = 0;$$

that is,

$$\underline{E}[(f(X) - \lambda)B] = 0.$$

- This is Walley's Generalized Bayes Rule (GBR).
  - Walley proposed iteration:  $\mu_{i+1} = \mu_i + 2\underline{E}[(f(X) - \mu_i)B] / (\overline{P}(B) + \underline{P}(B)).$

# Lavine's algorithm

In 1991, Lavine published a paper on robust statistics with the same algorithm, apparently unaware of the literature.

Lavine's algorithm became quite popular.

- Until Lavine's algorithm, calculation of posterior lower expectations in robust statistics usually relied on very special arguments.
  - Often, minimax theory.

## Now, imprecise likelihoods

- Suppose we have K(X) ("prior") and K(Y|X = x) for each x ("likelihood").
- Suppose K(Y|X = x) is separately specified (important condition!).
- If  $\underline{P}(Y = y) > 0$ ,  $\underline{E}[f(X)|Y = y]$  is the unique solution of the equation

$$\underline{E}[(f(X) - \lambda)p_{\lambda}(y|X)] = 0,$$

where

$$p_{\lambda}(y|X) = \begin{cases} \frac{E[y|x]}{E[y|x]} & \text{if } f(x) \ge \lambda \\ \frac{E[y|x]}{E[y|x]} & \text{if } f(x) < \lambda \end{cases}$$

## **Dealing with imprecise likelihoods**

$$\underline{E}[f(X)|Y=y] = \min_{p',p''} \left[ \frac{\sum_{i} (f_i L_y(x_i) p'_i + f_i U_y(x_i) p''_i)}{\sum_{j} \left( L_y(x_j) p'_j + U_y(x_j) p''_j \right)} \right],$$

subject to:

$$A(p' + p'') \le 0,$$
  
$$\sum_{i} (p'_{i} + p''_{i}) = 1, \qquad p'_{i} \ge 0, p''_{i} \ge 0.$$

## **Example (based on White 1986)**

• Variable with 4 values  $\{\theta_1, \theta_2, \theta_3, \theta_4\}$ ,

 $2.5p(\theta_1) \ge p(\theta_4) \ge 2p(\theta_1),$ 

 $10p(\theta_3) \ge p(\theta_2) \ge 9p(\theta_3), \ p(\theta_2) = 5p(\theta_4).$ 

Also, bounds on likelihood:

$$L(x|\theta_1) = 0.9,$$
  $L(x|\theta_2) = 0.1125,$   
 $L(x|\theta_3) = 0.05625,$   $L(x|\theta_4) = 0.1125,$   
 $U(x|\theta_1) = 0.95,$   $U(x|\theta_2) = 0.1357,$   
 $U(x|\theta_3) = 0.1357,$   $U(x|\theta_4) = 0.1357.$ 

## **Example: solution**

$$\frac{P(\theta_1|x) = \min_{p',p''} (0.9p'_1 + 0.95p''_1),}{p' \ge 0, p'' \ge 0,}$$

$$\begin{bmatrix} -\frac{5}{2} & 0 & 0 & 1 \\ 2 & 0 & 0 & -1 \\ 0 & -1 & 0 & 5 \\ 0 & 1 & 0 & -5 \\ 0 & -1 & 9 & 0 \\ 0 & 1 & -10 & 0 \end{bmatrix} [p' + p''] \le 0,$$

 $F_1\alpha' + F_2\alpha'' = 1$ , where

 $F_1 = [0.9, 0.1125, 0.0562, 0.1125], F_2 = [0.95, 0.1357, 0.1357, 0.1357].$ By linear programming:  $\underline{P}(\theta_1 | x) = 0.2881$ .
### **Independence relations**

- 1. We may easily face some "inferential vacuity": A and B have no logical relation, P(A) = 1/2, P(B) = 1/2; then  $P(A \land B) \in [0, 1/2]$ .
- 2. Introduce independence to reduce inferential vacuity...
  - A and B independent, P(A) = 1/2, P(B) = 1/2; then  $P(A \wedge B) = 1/4$ .
- 3. Independence leads to
  - *nonlinear* constraints.
  - open problems concerning complexity.
- 4. Idea: organize independence relations using graphs.
  - This will take us to credal networks and the like; this is for other talks.

### **Credal sets**

- So far, Boolean and categorical variables, with linear programming.
- Some general terminology and understanding helps.
- A credal set is a set of probability measures (distributions).
- A credal set is usually defined by a set of assessments.

Example:

- **1.**  $\Omega = \{\omega_1, \omega_2, \omega_3\}.$
- **2.**  $P(\omega_i) = p_i$ .
- **3.**  $p_1 > p_3$ ,  $2p_1 \ge p_2$ ,  $p_1 \le 2/3$  and  $p_3 \in [1/6, 1/3]$ .
- 4. Take points  $P = (p_1, p_2, p_3)$ .

### Some geometry

1. 
$$\Omega = \{\omega_1, \omega_2, \omega_3\}.$$
  
2.  $P(\omega_i) = p_i.$   
3.  $p_1 > p_3, 2p_1 \ge p_2, p_1 \le 2/3 \text{ and } p_3 \in [1/6, 1/3].$   
4. Take points  $P = (p_1, p_2, p_3).$ 



### **Baricentric coordinates**



The coordinates of a distribution are read on the lines bissecting the angles of the triangle.

### Exercise

Consider a variable X with 3 possible values  $x_1$ ,  $x_2$  and  $x_3$ . Suppose the following assessments are given:

> $p(x_1) \le p(x_2) \le p(x_3);$  $p(x_i) \ge 1/20 \quad \text{for } i \in \{1, 2, 3\};$  $p(x_3 | x_2 \cup x_3) \le 3/4.$

Show the credal set determined by these assessments in baricentric coordinates.

### The basics of credal sets

- Credal set with distributions for X is denoted K(X).
- Given credal set K(X):
  - $\underline{E}[X] = \inf_{P \in K(X)} E_P[X].$
  - $\overline{E}[X] = \sup_{P \in K(X)} E_P[X].$
- For closed convex credal sets, lower and upper expectations are attained at vertices.
- A closed convex credal set is completely characterized by the associated lower expectation.
  - That is, there is only one lower expectation for a given closed convex credal set.
- The set of conditional distributions from a convex credal set is convex.

### **Exercise**

Suppose the following judgements are stated:

$$\omega_1$$
 $\omega_2$  $\omega_3$  $X_1$  $-1$  $0$  $1$  $X_2$  $0$  $2$  $-1$ Desirable

Here "desirable" means  $E[X] \ge 0$ . Draw the credal set defined by such assessments. What can be said about the desirability of

# **Back to algorithms**

- There are details on conditional probabilities that must be analyzed.
- Before, a little more on probabilistic logic: moving to first order.

# **First-order probabilistic logic**

- Now we have constants, relations, functions, quantifiers: man(Socrates)  $\lor$  mortal(Socrates)  $\forall x : man(x) \rightarrow mortal(x)$ .
- There are few general techniques here: too many variations.
- Nilsson (1986) advocated:  $P(\phi) \ge \alpha$  where  $\phi$  is sentence.
  - This can be solved by linear programming... but there are *decidability* questions.
  - Recent study by Jaumard et al (2007) for decidable fragments.

### **Example (Jaumard et al 2007)**

Assessments:

- $P(\forall x: \exists y: t(x,y) \land s(y)) = 0.9.$
- $P(\exists x : \neg r(x)) = 0.6.$

$$P(\exists y: \neg s(y)) = 0.6.$$

• 
$$P(\forall x : \forall y : \neg t(x, y) \land r(x) \land s(y)) = 0.7.$$

Compute  $P(\exists x : \exists y : \neg t(x, y))$ .

- Only 12 possible worlds (elements in the Lindenbaum algebra).
- Possible to apply linear program; extension to column generation method is open problem.

# **Other proposals**

- A different proposal is to impose probabilities over the domain:
  - Probability that a randomly selected bird flies is no smaller than 0.9."
- There has been great interest in this kind of probabilistic logic for
  - probabilistic logic programming;
  - the semantic web;
  - probabilistic databases.
- Most algorithms are for languages that can be translated to Bayesian networks.
- Few general algorithms (good starting point is the work of Thomas Lukasiewicz).

# **Zero probabilities**

- This is one of the most embarassing challenges in the world of credal sets.
- In the standard theory of probabilities, it is easy to ignore null events (events with probability zero).
  - Such events "will never happen".

# **Zero probabilities**

- This is one of the most embarassing challenges in the world of credal sets.
- In the standard theory of probabilities, it is easy to ignore null events (events with probability zero).
  - Such events "will never happen".
- But now there may be events with zero lower probability and nonzero upper probability.

• For instance, if  $P(B) \leq \alpha$ , then P(B) may be zero.

- So, we may observe A and we need to say something about P(A|B).
- This issue has drawn steady interest in the community, but it is not easy to understand.

# **Zeroes in linear fractional programs**

• Note: the linear fractional programs we discussed before required P(B) > 0.

• If  $\overline{P}(B) = 0$ , then programs become unfeasible.

They compute:

 $\min E_P[f(X)|B]$ 

where P belongs to

 $\{P: P(B) > 0\}.$ 

### **Full conditional measures**

- The most elegant solution is to consider *full probability* measures.
- A full probability measure is a function  $P(\cdot|\cdot)$  on  $\mathcal{E} \times \mathcal{E} \setminus \emptyset$ where  $\mathcal{E}$  is an algebra of events, such that
  - P(A|C) = 1;
  - $P(A|C) \ge 0$  for all A;
  - $P(A \cup B|C) = P(A|C) + P(B|C)$  when  $A \cap B = \emptyset$ ;
  - $P(A \cap B|C) = P(A|B \cap C) P(B|C)$  when  $B \cap C \neq \emptyset$ .
- Full probability measures allow P(A|C) to be defined even if P(C) = 0!

### **The Krauss-Dubins representation**

- We can partition  $\Omega$  into events  $L_0, \ldots, L_K$ ,  $K \leq N$ ,
- such that the full conditional measure is represented as a sequence of strictly positive probability measures  $P_0, \ldots, P_K$ , where the support of  $P_i$  is restricted to  $L_i$ .
- P(A|B) = P(A|B ∩ L<sub>B</sub>), where L<sub>B</sub> is the "layer" where B
   has nonzero probability.
- This representation has been advocated by Coletti & Scozzafava.

Example (note: 
$$P(A) = 0$$
, but  $P(B|A) = \beta$ ):

|       | A                           | $A^c$      |
|-------|-----------------------------|------------|
| B     | $\lfloor\beta\rfloor_1$     | $\alpha$   |
| $B^c$ | $\lfloor 1-\beta \rfloor_1$ | $1-\alpha$ |

#### **Exercise**

Consider assessments:

●  $P(A) \ge 1/2.$ 

● 
$$P(A^c \cap B^c) = 1/2.$$

●  $P(C|A^c \cap B) = 1/3.$ 

What is the Krauss-Dubins representation? What is P(C|B)? What is  $P(C^c|A^c \cap B)$ ?

### **Coletti-Scozzafava's method**

- Run the usual linear program with assessments  $P(A_i|B_i) \ge \alpha_i$ .
- If all  $B_i$  have  $P(B_i) > 0$  for all feasible solutions, stop (solution has been found).
- Otherwise:
  - Collect those  $B_i$  with  $P(B_i) = 0$  for all feasible solutions.
  - Then build another linear program *only* with those assessments with these  $B_i$ .
  - Repeat until there are no more assessments (inference is vacuous).

# **Improving the algorithm**

- Coletti-Scozzafava's method has been optimized and expanded by Vantaggi, Capotorti and others.
  - Idea is to quickly detect/exploit zero probabilities.
  - Check coherence (CkC) package: http://www.dipmat.unipg.it/~upkd/paid/software.html
  - Vantaggi has dealt with independence as well.

Overall, many tests to make, to detect whether events may are null.

# **Other approaches**

- Sequence of 2m direct linear programs in the worst case (Walley, Pelessoni, Vicig (1999, 2004)).
  - But still, necessary to run additional linear programs to check whether to proceed.
  - Possible to divide number of linear programs by 2, by examining slack variables (Cozman 2002).

All of this is to check "coherence" in a strong sense.
 There are weaker concepts of "coherence".

# **Changing gears: Classes of credal sets**

- General assessments are flexible (too flexible?) but are hard to handle for general spaces.
- Possible strategy is to focus on a few canonical ways to define credal sets.
- There are many!
  - Neighborhoods.
  - Capacities.
  - Boxes.
- A great deal of this work is found in the literature on robust statistics.
  - Usually, some mix of linear fractional programming (Dinkelbach-Jagannathan algorithm), minimax theory, and creativity with particular problems.

### The classic $\epsilon$ -contaminated

• Credal set based on  $P_0$  and  $\epsilon \in (0, 1)$ :

$$\{(1-\epsilon)P_0+\epsilon Q: \text{ any } Q\}.$$

 Old model, originally from robust frequentist statistics (Tukey, then Huber).

### Exercise

● If K(X) is an  $\epsilon$ -contaminated class, what are

#### $\underline{E}[f(X)], \quad \overline{E}[f(X)]?$

• If  $P_0$  is always nonzero, what is

$$\underline{P}(A|B), \quad \overline{P}(A|B)?$$

If one gives a measure L such that

 $L(\Omega) < 1,$ 

is this an  $\epsilon$ -contaminated class? If so, what are  $P_0$  and  $\epsilon$ ?

### **Solution**

• If K(X) is an  $\epsilon$ -contaminated class,

 $\underline{E}[f(X)] = (1-\epsilon)E_0[f(X)], \quad \overline{E}[f(X)] = (1-\epsilon)E_0[f(X)] + \epsilon.$ 

If one gives a measure L such that

 $L(\Omega) < 1,$ 

this an  $\epsilon\text{-contaminated class}$ 

 $\{(1-\epsilon)(L/L(\Omega)) + \epsilon Q\},\$ 

where  $\epsilon = 1 - L(\Omega)$ .

## **Other neighborhoods**

Total variation class:

```
\{P: |P(A) - R(A)| \le \epsilon\}.
```

(Exercise: Find lower/upper probabilities for event A.)

- Neighborhoods for several metrics; with several contaminations (given moments, given quantiles, given modes); from conjugate families (well-known example is Imprecise Dirichlet Model).
- Bose (1994): several contaminations at once,

$$\{(1-\epsilon)P + \epsilon_1 q_1 + \dots + \epsilon_n q_n : q_i \in K_i\}$$

### **Density bounded classes**

Given two measures L and U such that

 $L \le U, \quad L(\Omega) \le 1, \quad U(\Omega) \ge 1,$ 

take the set

$$\{P: L \le P \le U\}.$$

Lower/upper probabilities are easy to compute. For instance,

$$\underline{P}(A) = \max\left(L(A), 1 - U(A^c)\right).$$

• Constant bounded class if  $kL = P_0 = U/k$  for some  $P_0$ , k > 1.

### **Density ratio classes**

• Given two measures L and U such that  $L(A) \leq U(A)$  for every event A,

$$\{P = \mu/\mu(\Omega) : L \le \mu \le U\}.$$

- That is, you "draw"  $\mu$  between L and U, then normalize it.
- Equivalent definition: set of distributions such that for every A and B,

$$\frac{L(A)}{U(B)} \le \frac{P(A)}{P(B)} \le \frac{U(A)}{L(B)}.$$

### Facts about density ratio classes

Posterior probability:

$$\underline{P}(A|B) = \frac{L(A \cap B)}{L(A \cap B) + U(A^c \cap B)},$$
$$\overline{P}(A|B) = \frac{U(A \cap B)}{U(A \cap B) + L(A^c \cap B)}.$$

- Posterior from single likelihood: just multiply L and U by likelihood.
- There are bracketing algorithms for computing lower/upper expectations.

### **Constant density ratio class**

Set of distributions P such that

$$\frac{P(A)}{P(B)} \le \alpha \frac{P_0(A)}{P_0(B)},$$

for distribution  $P_0$  and  $\alpha > 1$ .

Class is preserved by conditioning/marginalization!

# **One great (obscure) idea**

- Wasserman and Kadane (1982) observed that for some classes (total variation, constant bounded, constant ratio),
  - it is possible to sample from the "center"  $P_0$  of the neighborhood, and compute lower expectations.

One of the few cases where a sampling algorithm has been applied to credal sets.

It would be nice to see other sampling methods, but hard to imagine how to do it.

### And 2-monotone capacities

If a credal set satisfies

$$\underline{P}(A \cup B) \ge \underline{P}(A) + \underline{P}(B) - \underline{P}(A \cap B),$$

it is 2-monotone.

Examples: 
e-contaminated, total variation, density bounded.

• Define 
$$\overline{F}_X(x) = \overline{P}(X \le x)$$
; then

$$\underline{E}[X] = \int_{-\infty}^{\infty} x \ d\overline{F}_X(x).$$

$$\underline{P}(A|B) = \frac{\underline{P}(A \cap B)}{\underline{P}(A \cap B) + \overline{P}(A^c \cap B)}$$

### **And belief functions**

• A capacity that is infinitely monotone; that is, for any n,

$$\underline{P}(\bigcup_{i=1}^{n} A_i) \ge \sum_{J \subset 1, \dots, n} (-1)^{|J|+1} \underline{P}(\bigcap_{i \in J} A_i).$$

- These are basic entities in Dempster-Shafer theory.
- They can always be expressed as a probability mass assignment and a multi-valued mapping.
- Useful:

$$\underline{E}[X] = \sum_{A} m(A) \inf_{\omega \in A} X(\omega).$$

### **Probability boxes (p-boxes)**

**9** Take two nondecreasing functions <u>F</u> and  $\overline{F}$  such that

#### $\underline{F} \le \overline{F}.$

The set of distributions such that

$$\{P: \underline{F} \le F \le \overline{F}\}.$$

is a p-box.

There has been work on risk assessment and reliability analysis with p-boxes: often discretization of continuous possibility spaces and then linear programming.

# **Changing gears: Decision making**

- **Set** of acts A, need to choose one.
  - There are several criteria!
- $\Gamma$ -minimax:

$$\arg \max_{X \in \mathcal{A}} \underline{E}[X] \,.$$

Maximality: maximal elements of the partial order  $\succ$ .
That is, X is maximal if

there is no  $Y \in \mathcal{A}$  such that  $E_P[Y - X] > 0$  for all  $P \in K$ .

E-admissibility: maximality for at least a distribution. That is, X is E-admissible if

there is  $P \in K$  such that  $E_P[X - Y] \ge 0$  for all  $Y \in \mathcal{A}$ .

Maximax, interval dominance, etc.

# **Comparing criteria**

Three acts:  $a_1 = 0.4$ ;  $a_2 = 0/1$  if  $A/A^c$ ;  $a_3 = 1/0$  if  $A/A^c$ .



 $P(A) \in [0.3, 0.7].$  $\Gamma$ -minimax:  $a_1$ ; Maximal: all of them; E-admissible:  $\{a_2, a_3\}.$ 

#### **Exercise**

Credal set  $\{P_1, P_2\}$ :  $P_1(s_1) = 1/8$ ,  $P_1(s_2) = 3/4$ ,  $P_1(s_3) = 1/8$ ,  $P_2(s_1) = 3/4$ ,  $P_2(s_2) = 1/8$ ,  $P_2(s_3) = 1/8$ , Acts  $\{a_1, a_2, a_3\}$ :

|       | $s_1$ | $s_2$ | $s_3$ |
|-------|-------|-------|-------|
| $a_1$ | 3     | 3     | 4     |
| $a_2$ | 2.5   | 3.5   | 5     |
| $a_3$ | 1     | 5     | 4.    |

Which one to select?
#### **Solution**

 $P_1(s_1) = 1/8, P_1(s_2) = 3/4, ; P_1(s_3) = 1/8, P_2(s_1) = 3/4, P_2(s_2) = 1/8, P_2(s_3) = 1/8.$ Acts  $\{a_1, a_2, a_3\}$ :

|       | $s_1$ | $s_2$ | $s_3$ |
|-------|-------|-------|-------|
| $a_1$ | 3     | 3     | 4     |
| $a_2$ | 2.5   | 3.5   | 5     |
| $a_3$ | 1     | 5     | 4.    |

Then:

$$E_1[a_1] = 3/8 + 18/8 + 4/8 = 25/8;$$
  

$$E_1[a_2] = 2.5/8 + 21/8 + 5/8 = 28.5/8;$$
  

$$E_1[a_3] = 1/8 + 15/8 + 4/8 = 35/8.$$
  

$$E_2[a_1] = 18/8 + 3/8 + 4/8 = 25/8;$$
  

$$E_2[a_2] = 15/8 + 3.5/8 + 5/8 = 23.5/8$$
  

$$E_2[a_3] = 2/8 + 5/8 + 4/8 = 11/8.$$

# A quick discussion

Limited to finite set of acts.

- **•** Consider  $\Gamma$ -minimax:
  - Compute  $\underline{E}[a_i]$  for each act.
  - Select act with highest  $\underline{E}[a_i]$ .
- (Considerable minimax theory in Berger's book (1985).)

## Maximality

- **•** Find  $\Gamma$ -minimax solution  $a_0$ .
- **•** For each other act  $a_i \neq a_0$ , verify whether

$$E_P[a_0 - a_i] \ge 0;$$

for all P; if so, discard  $a_i$ .

That is, verify whether

$$\underline{E}[a_0 - a_i] \ge 0.$$

## **E-admissibility**

• For each act  $a_i$ :

- Collect all constraints that must be satisfied by P.
- Add constraints

$$E_P[a_i - a_j] \ge 0$$

for every  $a_j \neq a_i$ .

• If all these constraints can be satisfied for some P, then  $a_i$  is E-admissible.

This scheme can be extended to problems with mixed acts (Utkin and Augustin 2005).

#### **Exercise**

Credal set  $\{P_1, P_2\}$ :  $P_1(s_1) = 1/8$ ,  $P_1(s_2) = 3/4$ ,  $P_1(s_3) = 1/8$ ,  $P_2(s_1) = 3/4$ ,  $P_2(s_2) = 1/8$ ,  $P_2(s_3) = 1/8$ , Acts  $\{a_1, a_2, a_3\}$ :

|       | $s_1$ | $s_2$ | $s_3$ |
|-------|-------|-------|-------|
| $a_1$ | 3     | 3     | 4     |
| $a_2$ | 2.5   | 3.5   | 5     |
| $a_3$ | 1     | 5     | 4.    |

Which one to select? And if we take convex hull of credal set?

#### **Solution**

 $P_1(s_1) = 1/8, P_1(s_2) = 3/4, P_1(s_3) = 1/8, P_2(s_1) = 3/4, P_2(s_2) = 1/8, P_2(s_3) = 1/8.$ 

Acts  $\{a_1, a_2, a_3\}$ :

|       | $s_1$ | $s_2$ | $s_3$ |
|-------|-------|-------|-------|
| $a_1$ | 3     | 3     | 4     |
| $a_2$ | 2.5   | 3.5   | 5     |
| $a_3$ | 1     | 5     | 4.    |

• Consider 
$$P = \alpha P_1 + (1 - \alpha) P_2$$
.

Then:

$$E_P[a_2 - a_1] = 10\alpha - 3 \ge 0; \quad \alpha \ge 3/10.$$

And:

$$E_P[a_2 - a_3] = -30\alpha + 17 \ge 0; \quad \alpha \le 17/30.$$

### Conclusion

- Goal of this talk: overview of some central ideas without independence.
- Basic tool is linear programming (column generation, etc).
  - Full conditional measures require special tools.
- There are many special kinds of credal sets with associated algorithms: neighborhoods, capacities, etc.
- Decision making (severa criteria) requires such calculations.