Algorithms for Imprecise Probability Part I

Fabio G. Cozman - Cassio P. de Campos
fgcozman@usp.br - cassiopc@gmail.com

Overview

- Part I: algorithms without independence (this talk).
- Part II: algorithms with independence (next talk, by Cassio).

Overview (some more)

- Part I: algorithms without independence (this talk).

1. The basic linear fractional program.
2. Dealing with probabilities that may be zero.
3. Special important cases: neighborhoods, capacities, and the like.
4. Decision making.

- Part II: algorithms with independence (next talk, by Cassio).

Easy warm-up

- Possibility space Ω with states ω; events are subsets of Ω.
- Random variables and indicator functions.
- Bounded function $X: \Omega \rightarrow \Re$.
- Special type: indicator function of event A :
- Denoted by A as well.
- $A(\omega)=1$ if $\omega \in A ; 0$ otherwise.

Axioms for expectations

EU1 If $\alpha \leq X \leq \beta$, then $\alpha \leq E[X] \leq \beta$.
EU2 $E[X+Y]=E[X]+E[Y]$.

Some consequences:

1. $X \geq Y \Rightarrow E[X] \geq E[Y]$.
2. $E[\alpha X]=\alpha X$.

Probabilities

- The probability $P(A)$ is $E[A]$.
- Properties of a probability measure:

PU1 $P(A) \geq 0$.
PU2 $P(\Omega)=1$.
PU3 If $A \cap B=\emptyset, P(A \cup B)=P(A)+P(B)$.

Conditional expectations/probabilities

- Conditional expectation of X given B,

$$
E[X \mid B]=\frac{E[B X]}{P(B)} \quad \text { if } P(B)>0 .
$$

- Bayes rule: If $P(B)>0$, then

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)} .
$$

Algorithms: Boole (1854)

- Propositional formula ϕ :

1. propositions
2. operators ($\neg, \wedge, \vee, \rightarrow)$.

- Take Ω as the set of 2^{n} truth assignments for n propositions.
- Interpret $P(\phi) \geq \alpha$ as

$$
\sum_{\omega \models \phi} P(\omega) \geq \alpha
$$

Probabilistic satisfiability

- Given m assessments, is there a probability measure over Ω ?
- Each assessments is a linear constraint.
- Must satisfy $P(\omega) \geq 0$ and $\sum_{\omega \in \Omega} P(\omega)=1$.
- This is a linear program!
- Derived first by Hailperin (1965).
- Somewhat surprisingly, NP-complete problem.
- The same as usual satisfiability (!?!).
- Note: solution is at extreme points.

Exercise

Build linear program:

- $P(A) \geq \alpha$.
- $B \rightarrow C$.
- $P(B)=\beta$.

Can you give bounds for $P(A \wedge B \wedge C)$?

Solution

- $P(A) \geq \alpha, B \rightarrow C, P(B)=\beta$.

Define:

ω_{i}	A	B	C
1	0	0	0
2	0	0	1
3	0	1	0
4	0	1	1
5	1	0	0
6	1	0	1
7	1	1	0
8	1	1	1

Then ω_{3} and ω_{7} are impossible; and

$$
p_{5}+p_{6}+p_{8}=\alpha, \quad p_{4}+p_{8}=\beta, \quad p_{i} \geq 0, \quad \sum_{i} p_{i}=1 .
$$

de Finetti's fundamental theorem

- Given m assessments over events H_{i}, is there a probability measure over them?
- And how about the allowed assessments over another event H_{0} ?
- Theorem: $P\left(H_{0}\right)$ belongs to an interval with constraints given by other assessments
- (and the usual $P(\omega) \geq 0$ and $\sum_{\omega \in \Omega} P(\omega)=1$).
- This is a linear program.
- Well, this is the same linear program as before (Gilio (1980)).

Exercise

Coletti and Scozzafava (1999).

- Take H_{1}, H_{2}, H_{3}.
- Assume $H_{3} \subset H_{1}^{c} \cap H_{2}$.
- Assessments $P\left(H_{1}\right)=1 / 2, P\left(H_{2}\right)=1 / 5, P\left(H_{3}\right)=1 / 8$.

Build linear program.

Exercise

Coletti and Scozzafava (1999).

- Take H_{1}, H_{2}, H_{3}.
- Assume $H_{3} \subset H_{1}^{c} \cap H_{2}$.
- Assessments $P\left(H_{1}\right)=1 / 2, P\left(H_{2}\right)=1 / 5, P\left(H_{3}\right)=1 / 8$.

Build linear program.

- $x_{1}=P\left(A_{1}\right) ; A_{1}=H_{1} \cap H_{2} \cap H_{3}^{c}$.
- $x_{2}=P\left(A_{2}\right) ; A_{2}=H_{1} \cap H_{2}^{c} \cap H_{3}^{c}$.
- $x_{3}=P\left(A_{3}\right) ; A_{3}=H_{1}^{c} \cap H_{2} \cap H_{3}^{c}$.
- $x_{4}=P\left(A_{4}\right) ; A_{4}=H_{1}^{c} \cap H_{2} \cap H_{3}$.
- $x_{5}=P\left(A_{5}\right) ; A_{5}=H_{1}^{c} \cap H_{2}^{c} \cap H_{3}^{c}$.

Exercise

Coletti and Scozzafava (1999).

- Take H_{1}, H_{2}, H_{3}.
- Assume $H_{3} \subset H_{1}^{c} \cap H_{2}$.
- Assessments $P\left(H_{1}\right)=1 / 2, P\left(H_{2}\right)=1 / 5, P\left(H_{3}\right)=1 / 8$.

Build linear program.

x_{1}	+	x_{2}							
x_{1}			+	x_{3}	+	x_{4}			
					x_{4}				
			$1 / 5$						
x_{1}	+	x_{2}	+	x_{3}	+	x_{4}	+	x_{5}	$=$
$x_{1} \geq 0$,	x_{2}	≥ 0,	$x_{3} \geq 0$,	$x_{4} \geq 0$,	x_{5}	≥ 0.			

Conditional probabilities

- Assessment $P(A \mid B) \geq \alpha$.
- Transform to (Hailperin (1965) and many others later):

$$
P(A \wedge B) \geq \alpha P(B)
$$

- Or use the language of events.
- Still a linear program!

Exercise

Coletti and Scozzafava (1999).

- Take H_{1}, H_{2}, H_{3}.
- Assume $H_{3} \subset H_{1}^{c} \cap H_{2}$.
- Assessments $P\left(H_{1}\right)=1 / 2, P\left(H_{2}\right)=1 / 5, P\left(H_{3}\right)=1 / 8$.
- Also, $P\left(H_{2} \mid H_{1} \cup H_{2}\right) \geq 1 / 2$.

Build linear program.

Column generation

- Probabilistic satisfiability is

$$
\min 0 p
$$

subject to $A p \geq \alpha, p \geq 1$.

- General problem minimizes $c p$.
- The difficulty is that p has 2^{n} elements (for a problem with n propositions).
- The usual technique is column generation.
- That is, generate only those columns of A that are necessary
- (at any given time, simplex only needs m columns where m is number of lines of A).

The mechanics of column generation

- Use the revised simplex algorithm.
- That is, keep only a basis $(m \times m)$.
- Must decide whether to bring a column into the basis.
- Then choose the column using a nonlinear subproblem:
- Solve $\min _{j} c_{B} A_{B}^{-1} A_{j}$.
- Note that A_{j} contains a set of logical formulas.
- This is a MAXSAT problem.
- Replace:

$$
X \wedge Y \doteq X Y, \quad X \vee Y \doteq X+Y-X Y, \quad \neg X \doteq 1-X
$$

- It can be reduced to linear (integer) programming!

Integer programming

- Very useful fact:
- Consider product $a \times b$, where
- $a \in[0,1]$.
- b is either 0 or 1 .
- Create a new variable c, replace $a \times b$ by c and add

$$
\begin{gathered}
0 \leq c \leq b \\
a-1+b \leq c \leq a .
\end{gathered}
$$

- Now solve by linear (integer) programming!

PSAT with column generation

- Best results in the literature: hundreds of propositions, hundreds of assessments (Perron et al 2004), using lots of special tricks.
- There are also a few special cases that are "easy" and several variants, etc.
- For instance, when formulas can be put in a "tree" structure (Andersen \& Pretolani 1999).
- Also if formulas can be organized in junction trees (van der Gaag 1991).
- (Also, approximation methods based on local search for large problems, but really no guarantees yet...)

Phase transitions?

Aside: PPL system

- Interface in Python, connects to CPLEX or free linear programming tools (at http://www.pmr.poli.usp.br/Itd/Software/PPL/index.html).

```
>>> s1 = 'a <=> (b?c)'
>>> s1
'a <=> (b?c)'
>>> s2 = PPL.toCNF(s1)
>>> s2
'((?b j a) & (?c j a) & (b j c j ?a))'
>>> PPL.p(s1, 0.5)
>>> s3 = 'd j (e & f) j g'
>>> PPL.p(s3, 0.3, 0.8)
>>> PPL.checkCoherence()
Coherent!
```

- Another package by Dickey (see SIPTA Newsletter).

Computing conditional probabilities

- Now suppose we wish $\underline{P}(A \mid B)=\min P(A \mid B)$.
- This is not a linear program (it is a linear fractional program).
- However, it can be solved through linear programming:
- Charnes-Cooper transformation (similar solutions by White, Snow).
- Dinkelbach-Jagannathan algorithm (similar solutions by Walley, Lavine).

Charnes-Cooper transformation

- Wish to solve:

$$
\min _{p} \frac{\sum_{i} f_{i} \alpha_{i} p_{i}}{\sum_{i} \alpha_{i} p_{i}} \quad \text { s.t. } A p \geq 0, \sum_{i} p_{i}=1, p_{i} \geq 0 .
$$

where $\sum_{i} \alpha_{i} p_{i}>0$.

- Change variables to

$$
q_{i}=\frac{p_{i}}{\sum_{i} \alpha_{i} p_{i}} .
$$

- Now:

$$
\min _{q} \sum_{i} f_{i} \alpha_{i} q_{i} \quad \text { s.t. } A q \geq 0, \sum_{i} \alpha_{i} q_{i}=1, q_{i} \geq 0 .
$$

Exercise

- Take H_{1}, H_{2}, H_{3}.
- Assume $H_{3} \subset H_{1}^{c} \cap H_{2}$.
- Assessments $P\left(H_{1}\right)=1 / 2, P\left(H_{2}\right)=1 / 5, P\left(H_{3}\right)=1 / 8$.

Build linear program to compute $\underline{P}\left(H_{1} \mid H_{1} \cup H_{2}\right)$, applying the Charnes-Cooper transformation.

Solution

- Take H_{1}, H_{2}, H_{3}, assume $H_{3} \subset H_{1}^{c} \cap H_{2}$.
- Assessments $P\left(H_{1}\right)=1 / 2, P\left(H_{2}\right)=1 / 5, P\left(H_{3}\right)=1 / 8$.

Build linear program to compute $\underline{P}\left(H_{1} \mid H_{1} \cup H_{2}\right)$.
First,

$$
\begin{gathered}
\min \left(x_{1}+x_{2}\right) /\left(x_{1}+x_{2}+x_{3}+x_{4}\right) \quad \text { s.t. } \\
x_{1}+x_{2}=1 / 2 ; \quad x_{1}+x_{3}+x_{4}=1 / 5 ; \quad x_{4}=1 / 8 ; \quad x_{i} \geq 0 ; \quad \sum_{i} x_{i}=1 .
\end{gathered}
$$

Then

$$
\min \left(x_{1}+x_{2}\right) /\left(x_{1}+x_{2}+x_{3}+x_{4}\right) \quad \text { s.t. }
$$

$$
\begin{gathered}
x_{1} / 2+x_{2} / 2-x_{3} / 2-x_{4} / 2-x_{5} / 2=0 ; \quad 4 x_{1} / 5-x_{2} / 5+4 x_{3} / 5+4 x_{4} / 5-x_{5} / 5=0 ; \\
-x_{1} / 8-x_{2} / 8-x_{3} / 8+7 x_{4} / 8-x_{5} / 8=0 ; \quad x_{i} \geq 0 ; \quad \sum_{i} x_{i}=1 .
\end{gathered}
$$

Solution

- Take H_{1}, H_{2}, H_{3}, assume $H_{3} \subset H_{1}^{c} \cap H_{2}$.
- Assessments $P\left(H_{1}\right)=1 / 2, P\left(H_{2}\right)=1 / 5, P\left(H_{3}\right)=1 / 8$.

Build linear program to compute $\underline{P}\left(H_{1} \mid H_{1} \cup H_{2}\right)$.
First,

$$
\begin{gathered}
\min \left(x_{1}+x_{2}\right) /\left(x_{1}+x_{2}+x_{3}+x_{4}\right) \quad \text { s.t. } \\
x_{1}+x_{2}=1 / 2 ; \quad x_{1}+x_{3}+x_{4}=1 / 5 ; \quad x_{4}=1 / 8 ; \quad x_{i} \geq 0 ; \quad \sum_{i} x_{i}=1 .
\end{gathered}
$$

Then

$$
\min \left(y_{1}+y_{2}\right) \quad \text { s.t. }
$$

$$
\begin{gathered}
y_{1} / 2+y_{2} / 2-y_{3} / 2-y_{4} / 2-y_{5} / 2=0 ; \quad 4 y_{1} / 5-y_{2} / 5+4 y_{3} / 5+4 y_{4} / 5-y_{5} / 5=0 \\
-y_{1} / 8-y_{2} / 8-y_{3} / 8+7 y_{4} / 8-y_{5} / 8=0 ; \quad y_{i} \geq 0 ; \quad \sum_{i=1}^{4} y_{i}=1 .
\end{gathered}
$$

Larger example (based on Jaeger 1994)

- Take:

AntarticBird \rightarrow Bird,
FlyingBird \rightarrow Bird,
Penguim \rightarrow Bird,
FlyingBird \rightarrow Flies,
Penguim $\rightarrow \neg$ Flies,
$P($ FlyingBird \mid Bird $)=0.95$,
$P($ AntarticBird \mid Bird $)=0.01$,
$P($ Bird $) \geq 0.2$,
$P($ FlyingBird \vee Penguim \mid AntarticBird $) \geq 0.2$,
$P($ Flies \mid Bird $) \geq 0.8$.

- Then
$P($ FlyingBird \mid Bird $\wedge \neg$ AntarticBird $) \in[0.949,0.960]$,
$P($ Penguim $\mid \neg$ AntarticBird $) \in[0.000,0.050]$.

Dinkelbach-Jagannathan for probability

- Note:

$$
\lambda=\min \frac{P(A \cap B)}{P(B)},
$$

iff

$$
\min (P(A \cap B)-\lambda P(B))=0,
$$

assuming $P(B)>0$.

- The left side is strictly decreasing function of λ.
- So, we can bracket λ.

Dinkelbach-Jagannathan for expectation

- Also,

$$
\lambda=\min \frac{E[f(X) B]}{P(B)},
$$

iff

$$
\min (E[f(X) B]-\lambda P(B))=0
$$

or, rather,

$$
\min E[(f(X)-\lambda) B]=0 ;
$$

that is,

$$
\underline{E}[(f(X)-\lambda) B]=0 .
$$

- This is Walley's Generalized Bayes Rule (GBR).
- Walley proposed iteration:

$$
\mu_{i+1}=\mu_{i}+2 \underline{E}\left[\left(f(X)-\mu_{i}\right) B\right] /(\bar{P}(B)+\underline{P}(B)) .
$$

Lavine's algorithm

- In 1991, Lavine published a paper on robust statistics with the same algorithm, apparently unaware of the literature.
- Lavine's algorithm became quite popular.
- Until Lavine's algorithm, calculation of posterior lower expectations in robust statistics usually relied on very special arguments.
- Often, minimax theory.

Now, imprecise likelihoods

- Suppose we have $K(X)$ ("prior") and $K(Y \mid X=x)$ for each x ("likelihood").
- Suppose $K(Y \mid X=x)$ is separately specified (important condition!).
- If $\underline{P}(Y=y)>0, \underline{E}[f(X) \mid Y=y]$ is the unique solution of the equation

$$
\underline{E}\left[(f(X)-\lambda) p_{\lambda}(y \mid X)\right]=0,
$$

where

$$
p_{\lambda}(y \mid X)=\left\{\begin{array}{lll}
\underline{E}[y \mid x] & \text { if } & f(x) \geq \lambda \\
\bar{E}[y \mid x] & \text { if } & f(x)<\lambda
\end{array}\right.
$$

Dealing with imprecise likelihoods

$$
\underline{E}[f(X) \mid Y=y]=\min _{p^{\prime}, p^{\prime \prime}}\left[\frac{\sum_{i}\left(f_{i} L_{y}\left(x_{i}\right) p_{i}^{\prime}+f_{i} U_{y}\left(x_{i}\right) p_{i}^{\prime \prime}\right)}{\sum_{j}\left(L_{y}\left(x_{j}\right) p_{j}^{\prime}+U_{y}\left(x_{j}\right) p_{j}^{\prime \prime}\right)}\right],
$$

subject to:

$$
\begin{gathered}
A\left(p^{\prime}+p^{\prime \prime}\right) \leq 0 \\
\sum_{i}\left(p_{i}^{\prime}+p_{i}^{\prime \prime}\right)=1, \quad p_{i}^{\prime} \geq 0, p_{i}^{\prime \prime} \geq 0
\end{gathered}
$$

Example (based on White 1986)

- Variable with 4 values $\left\{\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}\right\}$,

$$
\begin{aligned}
2.5 p\left(\theta_{1}\right) & \geq p\left(\theta_{4}\right) \geq 2 p\left(\theta_{1}\right) \\
10 p\left(\theta_{3}\right) \geq p\left(\theta_{2}\right) & \geq 9 p\left(\theta_{3}\right), \quad p\left(\theta_{2}\right)=5 p\left(\theta_{4}\right) .
\end{aligned}
$$

- Also, bounds on likelihood:

$$
\begin{array}{cl}
L\left(x \mid \theta_{1}\right)=0.9, & L\left(x \mid \theta_{2}\right)=0.1125, \\
L\left(x \mid \theta_{3}\right)=0.05625, & L\left(x \mid \theta_{4}\right)=0.1125, \\
U\left(x \mid \theta_{1}\right)=0.95, & U\left(x \mid \theta_{2}\right)=0.1357, \\
U\left(x \mid \theta_{3}\right)=0.1357, & U\left(x \mid \theta_{4}\right)=0.1357 .
\end{array}
$$

Example: solution

$$
\begin{aligned}
& \frac{P}{P}\left(\theta_{1} \mid x\right)=\min _{p^{\prime}, p^{\prime \prime}}\left(0.9 p_{1}^{\prime}+0.95 p_{1}^{\prime \prime}\right), \\
& p^{\prime} \geq 0, p^{\prime \prime} \geq 0,
\end{aligned}
$$

$$
\left[\begin{array}{cccc}
-\frac{5}{2} & 0 & 0 & 1 \\
2 & 0 & 0 & -1 \\
0 & -1 & 0 & 5 \\
0 & 1 & 0 & -5 \\
0 & -1 & 9 & 0 \\
0 & 1 & -10 & 0
\end{array}\right]\left[p^{\prime}+p^{\prime \prime}\right] \leq 0
$$

$F_{1} \alpha^{\prime}+F_{2} \alpha^{\prime \prime}=1$, where
$F_{1}=[0.9,0.1125,0.0562,0.1125], F_{2}=[0.95,0.1357,0.1357,0.1357]$.
By linear programming: $\underline{P}\left(\theta_{1} \mid x\right)=0.2881$.

Independence relations

1. We may easily face some "inferential vacuity": A and B have no logical relation, $P(A)=1 / 2$, $P(B)=1 / 2$; then $P(A \wedge B) \in[0,1 / 2]$.
2. Introduce independence to reduce inferential vacuity...

- A and B independent, $P(A)=1 / 2, P(B)=1 / 2$; then $P(A \wedge B)=1 / 4$.

3. Independence leads to

- nonlinear constraints.
- open problems concerning complexity.

4. Idea: organize independence relations using graphs.

- This will take us to credal networks and the like; this is for other talks.

Credal sets

- So far, Boolean and categorical variables, with linear programming.
- Some general terminology and understanding helps.
- A credal set is a set of probability measures (distributions).
- A credal set is usually defined by a set of assessments.

Example:

1. $\Omega=\left\{\omega_{1}, \omega_{2}, \omega_{3}\right\}$.
2. $P\left(\omega_{i}\right)=p_{i}$.
3. $p_{1}>p_{3}, 2 p_{1} \geq p_{2}, p_{1} \leq 2 / 3$ and $p_{3} \in[1 / 6,1 / 3]$.
4. Take points $P=\left(p_{1}, p_{2}, p_{3}\right)$.

Some geometry

1. $\Omega=\left\{\omega_{1}, \omega_{2}, \omega_{3}\right\}$.
2. $P\left(\omega_{i}\right)=p_{i}$.
3. $p_{1}>p_{3}, 2 p_{1} \geq p_{2}, p_{1} \leq 2 / 3$ and $p_{3} \in[1 / 6,1 / 3]$.
4. Take points $P=\left(p_{1}, p_{2}, p_{3}\right)$.

Baricentric coordinates

The coordinates of a distribution are read on the lines bissecting the angles of the triangle.

Exercise

Consider a variable X with 3 possible values x_{1}, x_{2} and x_{3}. Suppose the following assessments are given:

$$
\begin{gathered}
p\left(x_{1}\right) \leq p\left(x_{2}\right) \leq p\left(x_{3}\right) ; \\
p\left(x_{i}\right) \geq 1 / 20 \quad \text { for } i \in\{1,2,3\} ; \\
p\left(x_{3} \mid x_{2} \cup x_{3}\right) \leq 3 / 4 .
\end{gathered}
$$

Show the credal set determined by these assessments in baricentric coordinates.

The basics of credal sets

- Credal set with distributions for X is denoted $K(X)$.
- Given credal set $K(X)$:
- $\underline{E}[X]=\inf _{P \in K(X)} E_{P}[X]$.
- $\bar{E}[X]=\sup _{P \in K(X)} E_{P}[X]$.
- For closed convex credal sets, lower and upper expectations are attained at vertices.
- A closed convex credal set is completely characterized by the associated lower expectation.
- That is, there is only one lower expectation for a given closed convex credal set.
- The set of conditional distributions from a convex credal set is convex.

Exercise

Suppose the following judgements are stated:

	ω_{1}	ω_{2}	ω_{3}	
X_{1}	-1	0	1	Desirable
X_{2}	0	2	-1	Desirable

Here "desirable" means $E[X] \geq 0$.
Draw the credal set defined by such assessments.
What can be said about the desirability of

	ω_{1}	ω_{2}	ω_{3}
X_{3}	1	-1	-1
X_{4}	-2	4	1

Back to algorithms

- There are details on conditional probabilities that must be analyzed.
- Before, a little more on probabilistic logic: moving to first order.

First-order probabilistic logic

- Now we have constants, relations, functions, quantifiers: man(Socrates) \vee mortal(Socrates) $\forall x: \operatorname{man}(x) \rightarrow \operatorname{mortal}(x)$.
- There are few general techniques here: too many variations.
- Nilsson (1986) advocated: $P(\phi) \geq \alpha$ where ϕ is sentence.
- This can be solved by linear programming... but there are decidability questions.
- Recent study by Jaumard et al (2007) for decidable fragments.

Example (Jaumard et al 2007)

Assessments:

- $P(\forall x: \exists y: t(x, y) \wedge s(y))=0.9$.
- $P(\exists x: \neg r(x))=0.6$.
- $P(\exists y: \neg s(y))=0.6$.
- $P(\forall x: \forall y: \neg t(x, y) \wedge r(x) \wedge s(y))=0.7$.

Compute $P(\exists x: \exists y: \neg t(x, y))$.

- Only 12 possible worlds (elements in the Lindenbaum algebra).
- Possible to apply linear program; extension to column generation method is open problem.

Other proposals

- A different proposal is to impose probabilities over the domain:
- "Probability that a randomly selected bird flies is no smaller than 0.9."
- There has been great interest in this kind of probabilistic logic for
- probabilistic logic programming;
- the semantic web;
- probabilistic databases.
- Most algorithms are for languages that can be translated to Bayesian networks.
- Few general algorithms (good starting point is the work of Thomas Lukasiewicz).

Zero probabilities

- This is one of the most embarassing challenges in the world of credal sets.
- In the standard theory of probabilities, it is easy to ignore null events (events with probability zero).
- Such events "will never happen".

Zero probabilities

- This is one of the most embarassing challenges in the world of credal sets.
- In the standard theory of probabilities, it is easy to ignore null events (events with probability zero).
- Such events "will never happen".
- But now there may be events with zero lower probability and nonzero upper probability.
- For instance, if $P(B) \leq \alpha$, then $P(B)$ may be zero.
- So, we may observe A and we need to say something about $P(A \mid B)$.
- This issue has drawn steady interest in the community, but it is not easy to understand.

Zeroes in linear fractional programs

- Note: the linear fractional programs we discussed before required $P(B)>0$.
- If $\bar{P}(B)=0$, then programs become unfeasible.
- They compute:

$$
\min E_{P}[f(X) \mid B]
$$

where P belongs to

$$
\{P: P(B)>0\} .
$$

Full conditional measures

- The most elegant solution is to consider full probability measures.
- A full probability measure is a function $P(\cdot \mid \cdot)$ on $\mathcal{E} \times \mathcal{E} \backslash \emptyset$ where \mathcal{E} is an algebra of events, such that
- $P(A \mid C)=1$;
- $P(A \mid C) \geq 0$ for all A;
- $P(A \cup B \mid C)=P(A \mid C)+P(B \mid C)$ when $A \cap B=\emptyset$;
- $P(A \cap B \mid C)=P(A \mid B \cap C) P(B \mid C)$ when $B \cap C \neq \emptyset$.
- Full probability measures allow $P(A \mid C)$ to be defined even if $P(C)=0$!

The Krauss-Dubins representation

- We can partition Ω into events $L_{0}, \ldots, L_{K}, K \leq N$,
- such that the full conditional measure is represented as a sequence of strictly positive probability measures P_{0}, \ldots, P_{K}, where the support of P_{i} is restricted to L_{i}.
- $P(A \mid B)=P\left(A \mid B \cap L_{B}\right)$, where L_{B} is the "layer" where B has nonzero probability.
- This representation has been advocated by Coletti \& Scozzafava.

Example (note: $P(A)=0$, but $P(B \mid A)=\beta$):

	A	A^{c}
B	$\lfloor\beta\rfloor_{1}$	α
B^{c}	$\lfloor 1-\beta\rfloor_{1}$	$1-\alpha$

Exercise

Consider assessments:

- $P(A) \geq 1 / 2$.
- $P\left(A^{c} \cap B^{c}\right)=1 / 2$.
- $P\left(C \mid A^{c} \cap B\right)=1 / 3$.

What is the Krauss-Dubins representation?
What is $P(C \mid B)$?
What is $P\left(C^{c} \mid A^{c} \cap B\right)$?

Coletti-Scozzafava's method

- Run the usual linear program with assessments $P\left(A_{i} \mid B_{i}\right) \geq \alpha_{i}$.
- If all B_{i} have $P\left(B_{i}\right)>0$ for all feasible solutions, stop (solution has been found).
- Otherwise:
- Collect those B_{i} with $P\left(B_{i}\right)=0$ for all feasible solutions.
- Then build another linear program only with those assessments with these B_{i}.
- Repeat until there are no more assessments (inference is vacuous).

Improving the algorithm

- Coletti-Scozzafava's method has been optimized and expanded by Vantaggi, Capotorti and others.
- Idea is to quickly detect/exploit zero probabilities.
- Check coherence (CkC) package: http://www.dipmat.unipg.it/~upkd/paid/software.html
- Vantaggi has dealt with independence as well.
- Overall, many tests to make, to detect whether events may are null.

Other approaches

- Sequence of $2 m$ direct linear programs in the worst case (Walley, Pelessoni, Vicig (1999, 2004)).
- But still, necessary to run additional linear programs to check whether to proceed.
- Possible to divide number of linear programs by 2, by examining slack variables (Cozman 2002).
- All of this is to check "coherence" in a strong sense.
- There are weaker concepts of "coherence".

Changing gears: Classes of credal sets

- General assessments are flexible (too flexible?) but are hard to handle for general spaces.
- Possible strategy is to focus on a few canonical ways to define credal sets.
- There are many!
- Neighborhoods.
- Capacities.
- Boxes.
- A great deal of this work is found in the literature on robust statistics.
- Usually, some mix of linear fractional programming (Dinkelbach-Jagannathan algorithm), minimax theory, and creativity with particular problems.

The classic ϵ-contaminated

- Credal set based on P_{0} and $\epsilon \in(0,1)$:

$$
\left\{(1-\epsilon) P_{0}+\epsilon Q: \text { any } Q\right\} .
$$

- Old model, originally from robust frequentist statistics (Tukey, then Huber).

Exercise

- If $K(X)$ is an ϵ-contaminated class, what are

$$
\underline{E}[f(X)], \quad \bar{E}[f(X)] ?
$$

- If P_{0} is always nonzero, what is

$$
\underline{P}(A \mid B), \quad \bar{P}(A \mid B) ?
$$

- If one gives a measure L such that

$$
L(\Omega)<1,
$$

is this an ϵ-contaminated class?
If so, what are P_{0} and ϵ ?

Solution

- If $K(X)$ is an ϵ-contaminated class,

$$
\underline{E}[f(X)]=(1-\epsilon) E_{0}[f(X)], \quad \bar{E}[f(X)]=(1-\epsilon) E_{0}[f(X)]+\epsilon .
$$

- If one gives a measure L such that

$$
L(\Omega)<1,
$$

this an ϵ-contaminated class

$$
\{(1-\epsilon)(L / L(\Omega))+\epsilon Q\},
$$

where $\epsilon=1-L(\Omega)$.

Other neighborhoods

- Total variation class:

$$
\{P:|P(A)-R(A)| \leq \epsilon\} .
$$

(Exercise: Find lower/upper probabilities for event A.)

- Neighborhoods for several metrics; with several contaminations (given moments, given quantiles, given modes); from conjugate families (well-known example is Imprecise Dirichlet Model).
- Bose (1994): several contaminations at once,

$$
\left\{(1-\epsilon) P+\epsilon_{1} q_{1}+\cdots+\epsilon_{n} q_{n}: q_{i} \in K_{i}\right\} .
$$

Density bounded classes

- Given two measures L and U such that

$$
L \leq U, \quad L(\Omega) \leq 1, \quad U(\Omega) \geq 1,
$$

take the set

$$
\{P: L \leq P \leq U\} .
$$

- Lower/upper probabilities are easy to compute. For instance,

$$
\underline{P}(A)=\max \left(L(A), 1-U\left(A^{c}\right)\right) .
$$

- Constant bounded class if $k L=P_{0}=U / k$ for some P_{0}, $k>1$.

Density ratio classes

- Given two measures L and U such that $L(A) \leq U(A)$ for every event A,

$$
\{P=\mu / \mu(\Omega): L \leq \mu \leq U\} .
$$

- That is, you "draw" μ between L and U, then normalize it.
- Equivalent definition: set of distributions such that for every A and B,

$$
\frac{L(A)}{U(B)} \leq \frac{P(A)}{P(B)} \leq \frac{U(A)}{L(B)} .
$$

Facts about density ratio classes

- Posterior probability:

$$
\begin{aligned}
& \underline{P}(A \mid B)=\frac{L(A \cap B)}{L(A \cap B)+U\left(A^{c} \cap B\right)}, \\
& \bar{P}(A \mid B)=\frac{U(A \cap B)}{U(A \cap B)+L\left(A^{c} \cap B\right)} .
\end{aligned}
$$

- Posterior from single likelihood: just multiply L and U by likelihood.
- There are bracketing algorithms for computing lower/upper expectations.

Constant density ratio class

- Set of distributions P such that

$$
\frac{P(A)}{P(B)} \leq \alpha \frac{P_{0}(A)}{P_{0}(B)},
$$

for distribution P_{0} and $\alpha>1$.

- Class is preserved by conditioning/marginalization!

One great (obscure) idea

- Wasserman and Kadane (1982) observed that for some classes (total variation, constant bounded, constant ratio),
- it is possible to sample from the "center" P_{0} of the neighborhood, and compute lower expectations.
- One of the few cases where a sampling algorithm has been applied to credal sets.
- It would be nice to see other sampling methods, but hard to imagine how to do it.

And 2-monotone capacities

- If a credal set satisfies

$$
\underline{P}(A \cup B) \geq \underline{P}(A)+\underline{P}(B)-\underline{P}(A \cap B),
$$

it is 2-monotone.

- Examples: ϵ-contaminated, total variation, density bounded.
- Define $\bar{F}_{X}(x)=\bar{P}(X \leq x)$; then

$$
\underline{E}[X]=\int_{-\infty}^{\infty} x d \bar{F}_{X}(x) .
$$

- Also,

$$
\underline{P}(A \mid B)=\frac{\underline{P}(A \cap B)}{\underline{P}(A \cap B)+\bar{P}\left(A^{c} \cap B\right)} .
$$

And belief functions

- A capacity that is infinitely monotone; that is, for any n,

$$
\underline{P}\left(\cup_{i=1}^{n} A_{i}\right) \geq \sum_{J \subset 1, \ldots, n}(-1)^{|J|+1} \underline{P}\left(\cap_{i \in J} A_{i}\right) .
$$

- These are basic entities in Dempster-Shafer theory.
- They can always be expressed as a probability mass assignment and a multi-valued mapping.
- Useful:

$$
\underline{E}[X]=\sum_{A} m(A) \inf _{\omega \in A} X(\omega) .
$$

Probability boxes (p-boxes)

- Take two nondecreasing functions \underline{F} and \bar{F} such that

$$
\underline{F} \leq \bar{F} .
$$

- The set of distributions such that

$$
\{P: \underline{F} \leq F \leq \bar{F}\}
$$

is a p-box.

- There has been work on risk assessment and reliability analysis with p-boxes: often discretization of continuous possibility spaces and then linear programming.

Changing gears: Decision making

- Set of acts \mathcal{A}, need to choose one.
- There are several criteria!
- Γ-minimax:

$$
\arg \max _{X \in \mathcal{A}} \underline{E}[X] .
$$

- Maximality: maximal elements of the partial order \succ. That is, X is maximal if
there is no $Y \in \mathcal{A}$ such that $E_{P}[Y-X]>0$ for all $P \in K$.
- E-admissibility: maximality for at least a distribution. That is, X is E-admissible if
there is $P \in K$ such that $E_{P}[X-Y] \geq 0$ for all $Y \in \mathcal{A}$.
- Maximax, interval dominance, etc.

Comparing criteria

Three acts: $a_{1}=0.4 ; a_{2}=0 / 1$ if $A / A^{c} ; a_{3}=1 / 0$ if A / A^{c}.

$P(A) \in[0.3,0.7]$.
Γ-minimax: a_{1}; Maximal: all of them; E-admissible: $\left\{a_{2}, a_{3}\right\}$.

Exercise

Credal set $\left\{P_{1}, P_{2}\right\}$:

$$
\begin{array}{lll}
P_{1}\left(s_{1}\right)=1 / 8, & P_{1}\left(s_{2}\right)=3 / 4, & P_{1}\left(s_{3}\right)=1 / 8, \\
P_{2}\left(s_{1}\right)=3 / 4, & P_{2}\left(s_{2}\right)=1 / 8, & P_{2}\left(s_{3}\right)=1 / 8,
\end{array}
$$

Acts $\left\{a_{1}, a_{2}, a_{3}\right\}$:

	s_{1}	s_{2}	s_{3}
a_{1}	3	3	4
a_{2}	2.5	3.5	5
a_{3}	1	5	4.

Which one to select?

Solution

$$
P_{1}\left(s_{1}\right)=1 / 8, P_{1}\left(s_{2}\right)=3 / 4, ; P_{1}\left(s_{3}\right)=1 / 8, \quad P_{2}\left(s_{1}\right)=3 / 4, P_{2}\left(s_{2}\right)=1 / 8, P_{2}\left(s_{3}\right)=1 / 8
$$

Acts $\left\{a_{1}, a_{2}, a_{3}\right\}$:

	s_{1}	s_{2}	s_{3}
a_{1}	3	3	4
a_{2}	2.5	3.5	5
a_{3}	1	5	4.

Then:

$$
\begin{aligned}
& E_{1}\left[a_{1}\right]=3 / 8+18 / 8+4 / 8=25 / 8 \\
& E_{1}\left[a_{2}\right]=2.5 / 8+21 / 8+5 / 8=28.5 / 8 \\
& E_{1}\left[a_{3}\right]=1 / 8+15 / 8+4 / 8=35 / 8 \\
& E_{2}\left[a_{1}\right]=18 / 8+3 / 8+4 / 8=25 / 8 \\
& E_{2}\left[a_{2}\right]=15 / 8+3.5 / 8+5 / 8=23.5 / 8 \\
& E_{2}\left[a_{3}\right]=2 / 8+5 / 8+4 / 8=11 / 8
\end{aligned}
$$

A quick discussion

- Limited to finite set of acts.
- Consider Γ-minimax:
- Compute $\underline{E}\left[a_{i}\right]$ for each act.
- Select act with highest $\underline{E}\left[a_{i}\right]$.
- (Considerable minimax theory in Berger's book (1985).)

Maximality

- Find Γ-minimax solution a_{0}.
- For each other act $a_{i} \neq a_{0}$, verify whether

$$
E_{P}\left[a_{0}-a_{i}\right] \geq 0
$$

for all P; if so, discard a_{i}.

- That is, verify whether

$$
\underline{E}\left[a_{0}-a_{i}\right] \geq 0 .
$$

E-admissibility

- For each act a_{i} :
- Collect all constraints that must be satisfied by P.
- Add constraints

$$
E_{P}\left[a_{i}-a_{j}\right] \geq 0
$$

for every $a_{j} \neq a_{i}$.

- If all these constraints can be satisfied for some P, then a_{i} is E-admissible.
- This scheme can be extended to problems with mixed acts (Utkin and Augustin 2005).

Exercise

Credal set $\left\{P_{1}, P_{2}\right\}$:

$$
\begin{array}{lll}
P_{1}\left(s_{1}\right)=1 / 8, & P_{1}\left(s_{2}\right)=3 / 4, & P_{1}\left(s_{3}\right)=1 / 8, \\
P_{2}\left(s_{1}\right)=3 / 4, & P_{2}\left(s_{2}\right)=1 / 8, & P_{2}\left(s_{3}\right)=1 / 8,
\end{array}
$$

Acts $\left\{a_{1}, a_{2}, a_{3}\right\}$:

	s_{1}	s_{2}	s_{3}
a_{1}	3	3	4
a_{2}	2.5	3.5	5
a_{3}	1	5	4.

Which one to select?
And if we take convex hull of credal set?

Solution

$$
P_{1}\left(s_{1}\right)=1 / 8, P_{1}\left(s_{2}\right)=3 / 4, ; P_{1}\left(s_{3}\right)=1 / 8, \quad P_{2}\left(s_{1}\right)=3 / 4, P_{2}\left(s_{2}\right)=1 / 8, P_{2}\left(s_{3}\right)=1 / 8
$$

Acts $\left\{a_{1}, a_{2}, a_{3}\right\}$:

	s_{1}	s_{2}	s_{3}
a_{1}	3	3	4
a_{2}	2.5	3.5	5
a_{3}	1	5	4.

- Consider $P=\alpha P_{1}+(1-\alpha) P_{2}$.
- Then:

$$
E_{P}\left[a_{2}-a_{1}\right]=10 \alpha-3 \geq 0 ; \quad \alpha \geq 3 / 10
$$

e And:

$$
E_{P}\left[a_{2}-a_{3}\right]=-30 \alpha+17 \geq 0 ; \quad \alpha \leq 17 / 30 .
$$

Conclusion

- Goal of this talk: overview of some central ideas without independence.
- Basic tool is linear programming (column generation, etc).
- Full conditional measures require special tools.
- There are many special kinds of credal sets with associated algorithms: neighborhoods, capacities, etc.
- Decision making (severa criteria) requires such calculations.

