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Overview

Part I: algorithms without independence (this talk).

Part II: algorithms with independence (next talk, by
Cassio).
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Overview (some more)

Part I: algorithms without independence (this talk).
1. The basic linear fractional program.
2. Dealing with probabilities that may be zero.
3. Special important cases: neighborhoods, capacities,

and the like.
4. Decision making.

Part II: algorithms with independence (next talk, by
Cassio).
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Easy warm-up

Possibility space Ω with states ω; events are subsets of
Ω.

Random variables and indicator functions.
Bounded function X : Ω → <.
Special type: indicator function of event A:

Denoted by A as well.
A(ω) = 1 if ω ∈ A; 0 otherwise.
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Axioms for expectations

EU1 If α ≤ X ≤ β, then α ≤ E[X] ≤ β.

EU2 E[X + Y ] = E[X] + E[Y ].

Some consequences:

1. X ≥ Y ⇒ E[X] ≥ E[Y ].

2. E[αX] = αX.
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Probabilities

The probability P (A) is E[A].

Properties of a probability measure:
PU1 P (A) ≥ 0.
PU2 P (Ω) = 1.
PU3 If A ∩ B = ∅, P (A ∪ B) = P (A) + P (B).
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Conditional expectations/probabilities

Conditional expectation of X given B,

E[X|B] =
E[BX]

P (B)
if P (B) > 0.

Bayes rule: If P (B) > 0, then

P (A|B) =
P (A ∩ B)

P (B)
.
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Algorithms: Boole (1854)

Propositional formula φ:
1. propositions
2. operators (¬, ∧, ∨, →).

Take Ω as the set of 2n truth assignments for n
propositions.

Interpret P (φ) ≥ α as
∑

ω|=φ

P (ω) ≥ α.
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Probabilistic satisfiability

Given m assessments, is there a probability measure
over Ω?

Each assessments is a linear constraint.
Must satisfy P (ω) ≥ 0 and

∑

ω∈Ω P (ω) = 1.

This is a linear program!
Derived first by Hailperin (1965).

Somewhat surprisingly, NP-complete problem.
The same as usual satisfiability (!?!).

Note: solution is at extreme points.
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Exercise

Build linear program:

P (A) ≥ α.

B → C.

P (B) = β.

Can you give bounds for P (A ∧ B ∧ C)?
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Solution
P (A) ≥ α, B → C, P (B) = β.

Define:

ωi A B C

1 0 0 0

2 0 0 1

3 0 1 0

4 0 1 1

5 1 0 0

6 1 0 1

7 1 1 0

8 1 1 1

Then ω3 and ω7 are impossible; and

p5 + p6 + p8 = α, p4 + p8 = β, pi ≥ 0,
∑

i

pi = 1.
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de Finetti’s fundamental theorem

Given m assessments over events Hi, is there a
probability measure over them?

And how about the allowed assessments over another
event H0?

Theorem: P (H0) belongs to an interval with constraints
given by other assessments

(and the usual P (ω) ≥ 0 and
∑

ω∈Ω P (ω) = 1).

This is a linear program.
Well, this is the same linear program as before (Gilio
(1980)).
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Exercise

Coletti and Scozzafava (1999).

Take H1, H2, H3.

Assume H3 ⊂ Hc
1 ∩ H2.

Assessments P (H1) = 1/2, P (H2) = 1/5, P (H3) = 1/8.

Build linear program.
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Exercise

Coletti and Scozzafava (1999).

Take H1, H2, H3.

Assume H3 ⊂ Hc
1 ∩ H2.

Assessments P (H1) = 1/2, P (H2) = 1/5, P (H3) = 1/8.

Build linear program.

x1 = P (A1); A1 = H1 ∩ H2 ∩ Hc
3.

x2 = P (A2); A2 = H1 ∩ Hc
2 ∩ Hc

3.

x3 = P (A3); A3 = Hc
1 ∩ H2 ∩ Hc

3.

x4 = P (A4); A4 = Hc
1 ∩ H2 ∩ H3.

x5 = P (A5); A5 = Hc
1 ∩ Hc

2 ∩ Hc
3.
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Exercise

Coletti and Scozzafava (1999).

Take H1, H2, H3.

Assume H3 ⊂ Hc
1 ∩ H2.

Assessments P (H1) = 1/2, P (H2) = 1/5, P (H3) = 1/8.

Build linear program.

x1 + x2 = 1/2

x1 + x3 + x4 = 1/5

x4 = 1/8

x1 + x2 + x3 + x4 + x5 = 1

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0, x5 ≥ 0.
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Conditional probabilities

Assessment P (A|B) ≥ α.

Transform to (Hailperin (1965) and many others later):

P (A ∧ B) ≥ αP (B) .

Or use the language of events.

Still a linear program!
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Exercise

Coletti and Scozzafava (1999).

Take H1, H2, H3.

Assume H3 ⊂ Hc
1 ∩ H2.

Assessments P (H1) = 1/2, P (H2) = 1/5, P (H3) = 1/8.

Also, P (H2|H1 ∪ H2) ≥ 1/2.

Build linear program.
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Column generation

Probabilistic satisfiability is

min 0p

subject to Ap ≥ α, p ≥ 1.

General problem minimizes cp.

The difficulty is that p has 2n elements (for a problem
with n propositions).

The usual technique is column generation.
That is, generate only those columns of A that are
necessary

(at any given time, simplex only needs m columns
where m is number of lines of A).
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The mechanics of column generation

Use the revised simplex algorithm.
That is, keep only a basis (m × m).
Must decide whether to bring a column into the
basis.

Then choose the column using a nonlinear subproblem:

Solve minj cBA−1
B Aj.

Note that Aj contains a set of logical formulas.
This is a MAXSAT problem.
Replace:

X ∧ Y
.
= XY, X ∨ Y

.
= X + Y − XY, ¬X

.
= 1 − X.

It can be reduced to linear (integer) programming!
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Integer programming

Very useful fact:
Consider product a × b, where

a ∈ [0, 1].
b is either 0 or 1.

Create a new variable c, replace a × b by c and add

0 ≤ c ≤ b;

a − 1 + b ≤ c ≤ a.

Now solve by linear (integer) programming!
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PSAT with column generation

Best results in the literature: hundreds of propositions,
hundreds of assessments (Perron et al 2004), using lots
of special tricks.

There are also a few special cases that are “easy” and
several variants, etc.

For instance, when formulas can be put in a “tree”
structure (Andersen & Pretolani 1999).
Also if formulas can be organized in junction trees
(van der Gaag 1991).

(Also, approximation methods based on local search for
large problems, but really no guarantees yet...)
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Phase transitions?
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n=50, k=3
n=50, k=4
n=50, k=5
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Aside: PPL system

Interface in Python, connects to CPLEX or free linear
programming tools (at
http://www.pmr.poli.usp.br/ltd/Software/PPL/index.html).
>>> s1 = ’a <=> (b?c)’

>>> s1

’a <=> (b?c)’

>>> s2 = PPL.toCNF(s1)

>>> s2

’((?b j a) & (?c j a) & (b j c j ?a))’

>>> PPL.p(s1, 0.5)

>>> s3 = ’d j (e & f) j g’

>>> PPL.p(s3, 0.3, 0.8)

>>> PPL.checkCoherence()

Coherent!

Another package by Dickey (see SIPTA Newsletter).
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Computing conditional probabilities

Now suppose we wish P (A|B) = min P (A|B).

This is not a linear program (it is a linear fractional
program).

However, it can be solved through linear programming:
Charnes-Cooper transformation (similar solutions by
White, Snow).
Dinkelbach-Jagannathan algorithm (similar solutions
by Walley, Lavine).
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Charnes-Cooper transformation

Wish to solve:

min
p

∑

i fiαipi
∑

i αipi
s.t. Ap ≥ 0,

∑

i

pi = 1, pi ≥ 0.

where
∑

i αipi > 0.

Change variables to

qi =
pi

∑

i αipi
.

Now:

min
q

∑

i

fiαiqi s.t. Aq ≥ 0,
∑

i

αiqi = 1, qi ≥ 0.
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Exercise

Take H1, H2, H3.

Assume H3 ⊂ Hc
1 ∩ H2.

Assessments P (H1) = 1/2, P (H2) = 1/5, P (H3) = 1/8.

Build linear program to compute P (H1|H1 ∪ H2), applying
the Charnes-Cooper transformation.
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Solution

Take H1, H2, H3, assume H3 ⊂ Hc
1 ∩ H2.

Assessments P (H1) = 1/2, P (H2) = 1/5, P (H3) = 1/8.

Build linear program to compute P (H1|H1 ∪ H2).
First,

min(x1 + x2)/(x1 + x2 + x3 + x4) s.t.

x1 + x2 = 1/2; x1 + x3 + x4 = 1/5; x4 = 1/8; xi ≥ 0;
∑

i

xi = 1.

Then

min(x1 + x2)/(x1 + x2 + x3 + x4) s.t.

x1/2 + x2/2 − x3/2 − x4/2 − x5/2 = 0; 4x1/5 − x2/5 + 4x3/5 + 4x4/5 − x5/5 = 0;

−x1/8 − x2/8 − x3/8 + 7x4/8 − x5/8 = 0; xi ≥ 0;
∑

i

xi = 1.
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Solution

Take H1, H2, H3, assume H3 ⊂ Hc
1 ∩ H2.

Assessments P (H1) = 1/2, P (H2) = 1/5, P (H3) = 1/8.

Build linear program to compute P (H1|H1 ∪ H2).
First,

min(x1 + x2)/(x1 + x2 + x3 + x4) s.t.

x1 + x2 = 1/2; x1 + x3 + x4 = 1/5; x4 = 1/8; xi ≥ 0;
∑

i

xi = 1.

Then

min(y1 + y2) s.t.

y1/2 + y2/2 − y3/2 − y4/2 − y5/2 = 0; 4y1/5 − y2/5 + 4y3/5 + 4y4/5 − y5/5 = 0;

−y1/8 − y2/8 − y3/8 + 7y4/8 − y5/8 = 0; yi ≥ 0;
4

∑

i=1

yi = 1.
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Larger example (based on Jaeger 1994)

Take:
AntarticBird→Bird,
FlyingBird→Bird,
Penguim→Bird,
FlyingBird→Flies,
Penguim→ ¬Flies,
P (FlyingBird|Bird) = 0.95,
P (AntarticBird|Bird) = 0.01,
P (Bird) ≥ 0.2,
P (FlyingBird ∨ Penguim|AntarticBird) ≥ 0.2,
P (Flies|Bird) ≥ 0.8.

Then
P (FlyingBird|Bird ∧ ¬AntarticBird) ∈ [0.949, 0.960],
P (Penguim|¬AntarticBird) ∈ [0.000, 0.050].
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Dinkelbach-Jagannathan for probability

Note:

λ = min
P (A ∩ B)

P (B)
,

iff
min (P (A ∩ B) − λP (B)) = 0,

assuming P (B) > 0.

The left side is strictly decreasing function of λ.

So, we can bracket λ.
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Dinkelbach-Jagannathan for expectation

Also,

λ = min
E[f(X)B]

P (B)
,

iff
min (E[f(X)B] − λP (B)) = 0

or, rather,
minE[(f(X) − λ)B] = 0;

that is,
E[(f(X) − λ)B] = 0.

This is Walley’s Generalized Bayes Rule (GBR).
Walley proposed iteration:
µi+1 = µi + 2E[(f(X) − µi)B] /(P (B) + P (B)).
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Lavine’s algorithm

In 1991, Lavine published a paper on robust statistics
with the same algorithm, apparently unaware of the
literature.

Lavine’s algorithm became quite popular.

Until Lavine’s algorithm, calculation of posterior lower
expectations in robust statistics usually relied on very
special arguments.

Often, minimax theory.
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Now, imprecise likelihoods

Suppose we have K(X) (“prior”) and K(Y |X = x) for
each x (“likelihood”).

Suppose K(Y |X = x) is separately specified (important
condition!).

If P (Y = y) > 0, E[f(X)|Y = y] is the unique solution of
the equation

E[(f(X) − λ)pλ(y|X)] = 0,

where

pλ(y|X) =

{

E[y|x] if f(x) ≥ λ

E[y|x] if f(x) < λ
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Dealing with imprecise likelihoods

E[f(X)|Y = y] = min
p′,p′′





∑

i (fiLy(xi)p
′
i + fiUy(xi)p

′′
i )

∑

j

(

Ly(xj)p′j + Uy(xj)p′′j

)



 ,

subject to:
A(p′ + p′′) ≤ 0,

∑

i

(p′i + p′′i ) = 1, p′i ≥ 0, p′′i ≥ 0.
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Example (based on White 1986)

Variable with 4 values {θ1, θ2, θ3, θ4},

2.5p(θ1) ≥ p(θ4) ≥ 2p(θ1) ,

10p(θ3) ≥ p(θ2) ≥ 9p(θ3) , p(θ2) = 5p(θ4) .

Also, bounds on likelihood:

L(x|θ1) = 0.9, L(x|θ2) = 0.1125,
L(x|θ3) = 0.05625, L(x|θ4) = 0.1125,

U(x|θ1) = 0.95, U(x|θ2) = 0.1357,
U(x|θ3) = 0.1357, U(x|θ4) = 0.1357.
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Example: solution

P (θ1|x) = minp′,p′′ (0.9p′1 + 0.95p′′1),
p′ ≥ 0, p′′ ≥ 0,





















−5
2 0 0 1

2 0 0 −1

0 −1 0 5

0 1 0 −5

0 −1 9 0

0 1 −10 0





















[p′ + p′′] ≤ 0,

F1α
′ + F2α

′′ = 1, where
F1 = [0.9, 0.1125, 0.0562, 0.1125], F2 = [0.95, 0.1357, 0.1357, 0.1357].

By linear programming: P (θ1|x) = 0.2881.
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Independence relations

1. We may easily face some “inferential vacuity”:
A and B have no logical relation, P (A) = 1/2,
P (B) = 1/2; then P (A ∧ B) ∈ [0, 1/2].

2. Introduce independence to reduce inferential vacuity...
A and B independent, P (A) = 1/2, P (B) = 1/2; then
P (A ∧ B) = 1/4.

3. Independence leads to
nonlinear constraints.
open problems concerning complexity.

4. Idea: organize independence relations using graphs.
This will take us to credal networks and the like; this
is for other talks.
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Credal sets

So far, Boolean and categorical variables, with linear
programming.

Some general terminology and understanding helps.

A credal set is a set of probability measures
(distributions).

A credal set is usually defined by a set of assessments.

Example:

1. Ω = {ω1, ω2, ω3}.

2. P (ωi) = pi.

3. p1 > p3, 2p1 ≥ p2, p1 ≤ 2/3 and p3 ∈ [1/6, 1/3].

4. Take points P = (p1, p2, p3).
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Some geometry

1. Ω = {ω1, ω2, ω3}.

2. P (ωi) = pi.

3. p1 > p3, 2p1 ≥ p2, p1 ≤ 2/3 and p3 ∈ [1/6, 1/3].

4. Take points P = (p1, p2, p3).
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��������������������p1

p2

p3

p1 p2

p3

(5/6, 0, 1/6)

(2/3, 0, 1/3)

(1/2, 0, 1/2)

(2/3, 1/3, 0) (1/3, 2/3, 0)

(0, 5/6, 1/6)

(0, 2/3, 1/3)
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Baricentric coordinates

p1 p2

p3

P1

P2(1/2, 0, 1/2) (0, 1/2, 1/2)

(1/3, 0, 2/3)

(1/2, 1/2, 0)

P1 = (2/3, 1/12, 1/4)

P2 = (5/18, 1/6, 5/9)

The coordinates of a distribution are read on the lines
bissecting the angles of the triangle.
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Exercise

Consider a variable X with 3 possible values x1, x2 and x3.
Suppose the following assessments are given:

p(x1) ≤ p(x2) ≤ p(x3) ;

p(xi) ≥ 1/20 for i ∈ {1, 2, 3};

p(x3|x2 ∪ x3) ≤ 3/4.

Show the credal set determined by these assessments in
baricentric coordinates.
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The basics of credal sets

Credal set with distributions for X is denoted K(X).

Given credal set K(X):
E[X] = infP∈K(X) EP [X].

E[X] = supP∈K(X) EP [X].

For closed convex credal sets, lower and upper
expectations are attained at vertices.

A closed convex credal set is completely characterized
by the associated lower expectation.

That is, there is only one lower expectation for a
given closed convex credal set.

The set of conditional distributions from a convex credal
set is convex.
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Exercise

Suppose the following judgements are stated:

ω1 ω2 ω3

X1 −1 0 1 Desirable

X2 0 2 −1 Desirable

Here “desirable” means E[X] ≥ 0.
Draw the credal set defined by such assessments.
What can be said about the desirability of

ω1 ω2 ω3

X3 1 −1 −1

X4 −2 4 1
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Back to algorithms

There are details on conditional probabilities that must
be analyzed.

Before, a little more on probabilistic logic: moving to first
order.
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First-order probabilistic logic

Now we have constants, relations, functions, quantifiers:
man(Socrates) ∨ mortal(Socrates)
∀x : man(x) → mortal(x).

There are few general techniques here: too many
variations.

Nilsson (1986) advocated: P (φ) ≥ α where φ is
sentence.

This can be solved by linear programming... but
there are decidability questions.
Recent study by Jaumard et al (2007) for decidable
fragments.
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Example (Jaumard et al 2007)

Assessments:

P (∀x : ∃y : t(x, y) ∧ s(y)) = 0.9.

P (∃x : ¬r(x)) = 0.6.

P (∃y : ¬s(y)) = 0.6.

P (∀x : ∀y : ¬t(x, y) ∧ r(x) ∧ s(y)) = 0.7.

Compute P (∃x : ∃y : ¬t(x, y)).

Only 12 possible worlds (elements in the Lindenbaum
algebra).

Possible to apply linear program; extension to column
generation method is open problem.
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Other proposals

A different proposal is to impose probabilities over the
domain:

“Probability that a randomly selected bird flies is no
smaller than 0.9.”

There has been great interest in this kind of
probabilistic logic for

probabilistic logic programming;
the semantic web;
probabilistic databases.

Most algorithms are for languages that can be
translated to Bayesian networks.

Few general algorithms (good starting point is the work
of Thomas Lukasiewicz).
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Zero probabilities

This is one of the most embarassing challenges in the
world of credal sets.

In the standard theory of probabilities, it is easy to
ignore null events (events with probability zero).

Such events “will never happen”.
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Zero probabilities

This is one of the most embarassing challenges in the
world of credal sets.

In the standard theory of probabilities, it is easy to
ignore null events (events with probability zero).

Such events “will never happen”.

But now there may be events with zero lower probability
and nonzero upper probability.

For instance, if P (B) ≤ α, then P (B) may be zero.

So, we may observe A and we need to say something
about P (A|B).

This issue has drawn steady interest in the community,
but it is not easy to understand.
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Zeroes in linear fractional programs

Note: the linear fractional programs we discussed
before required P (B) > 0.

If P (B) = 0, then programs become unfeasible.

They compute:
minEP [f(X)|B]

where P belongs to

{P : P (B) > 0}.
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Full conditional measures

The most elegant solution is to consider full probability
measures.

A full probability measure is a function P (·|·) on E × E\∅
where E is an algebra of events, such that

P (A|C) = 1;
P (A|C) ≥ 0 for all A;
P (A ∪ B|C) = P (A|C) + P (B|C) when A ∩ B = ∅;
P (A ∩ B|C) = P (A|B ∩ C) P (B|C) when B ∩ C 6= ∅.

Full probability measures allow P (A|C) to be defined
even if P (C) = 0!
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The Krauss-Dubins representation

We can partition Ω into events L0, . . . , LK , K ≤ N ,

such that the full conditional measure is represented as
a sequence of strictly positive probability measures
P0, . . . , PK , where the support of Pi is restricted to Li.

P (A|B) = P (A|B ∩ LB), where LB is the “layer” where B
has nonzero probability.

This representation has been advocated by Coletti &
Scozzafava.

Example (note: P (A) = 0, but P (B|A) = β):

A Ac

B bβc1 α

Bc b1 − βc1 1 − α
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Exercise

Consider assessments:

P (A) ≥ 1/2.

P (Ac ∩ Bc) = 1/2.

P (C|Ac ∩ B) = 1/3.

What is the Krauss-Dubins representation?
What is P (C|B)?
What is P (Cc|Ac ∩ B)?
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Coletti-Scozzafava’s method

Run the usual linear program with assessments
P (Ai|Bi) ≥ αi.

If all Bi have P (Bi) > 0 for all feasible solutions, stop
(solution has been found).

Otherwise:
Collect those Bi with P (Bi) = 0 for all feasible
solutions.
Then build another linear program only with those
assessments with these Bi.
Repeat until there are no more assessments
(inference is vacuous).
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Improving the algorithm

Coletti-Scozzafava’s method has been optimized and
expanded by Vantaggi, Capotorti and others.

Idea is to quickly detect/exploit zero probabilities.
Check coherence (CkC) package:
http://www.dipmat.unipg.it/˜upkd/paid/software.html
Vantaggi has dealt with independence as well.

Overall, many tests to make, to detect whether events
may are null.
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Other approaches

Sequence of 2m direct linear programs in the worst
case (Walley, Pelessoni, Vicig (1999, 2004)).

But still, necessary to run additional linear programs
to check whether to proceed.
Possible to divide number of linear programs by 2, by
examining slack variables (Cozman 2002).

All of this is to check “coherence” in a strong sense.
There are weaker concepts of “coherence”.
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Changing gears: Classes of credal sets

General assessments are flexible (too flexible?) but are
hard to handle for general spaces.

Possible strategy is to focus on a few canonical ways to
define credal sets.

There are many!
Neighborhoods.
Capacities.
Boxes.

A great deal of this work is found in the literature on
robust statistics.

Usually, some mix of linear fractional programming
(Dinkelbach-Jagannathan algorithm), minimax
theory, and creativity with particular problems.
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The classicε-contaminated

Credal set based on P0 and ε ∈ (0, 1):

{(1 − ε)P0 + εQ : any Q}.

Old model, originally from robust frequentist statistics
(Tukey, then Huber).
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Exercise

If K(X) is an ε-contaminated class, what are

E[f(X)] , E[f(X)]?

If P0 is always nonzero, what is

P (A|B) , P (A|B)?

If one gives a measure L such that

L(Ω) < 1,

is this an ε-contaminated class?
If so, what are P0 and ε?
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Solution

If K(X) is an ε-contaminated class,

E[f(X)] = (1−ε)E0[f(X)], E[f(X)] = (1−ε)E0[f(X)]+ε.

If one gives a measure L such that

L(Ω) < 1,

this an ε-contaminated class

{(1 − ε)(L/L(Ω)) + εQ},

where ε = 1 − L(Ω).
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Other neighborhoods

Total variation class:

{P : |P (A) − R(A)| ≤ ε}.

(Exercise: Find lower/upper probabilities for event A.)

Neighborhoods for several metrics; with several
contaminations (given moments, given quantiles, given
modes); from conjugate families (well-known example is
Imprecise Dirichlet Model).

Bose (1994): several contaminations at once,

{(1 − ε)P + ε1q1 + · · · + εnqn : qi ∈ Ki}.
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Density bounded classes

Given two measures L and U such that

L ≤ U, L(Ω) ≤ 1, U(Ω) ≥ 1,

take the set
{P : L ≤ P ≤ U}.

Lower/upper probabilities are easy to compute. For
instance,

P (A) = max (L(A), 1 − U(Ac)) .

Constant bounded class if kL = P0 = U/k for some P0,
k > 1.
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Density ratio classes

Given two measures L and U such that L(A) ≤ U(A) for
every event A,

{P = µ/µ(Ω) : L ≤ µ ≤ U}.

That is, you “draw” µ between L and U , then
normalize it.

Equivalent definition: set of distributions such that for
every A and B,

L(A)

U(B)
≤

P (A)

P (B)
≤

U(A)

L(B)
.

Algorithms for Imprecise ProbabilityPart I – p. 63/79



Facts about density ratio classes

Posterior probability:

P (A|B) =
L(A ∩ B)

L(A ∩ B) + U(Ac ∩ B)
,

P (A|B) =
U(A ∩ B)

U(A ∩ B) + L(Ac ∩ B)
.

Posterior from single likelihood: just multiply L and U by
likelihood.

There are bracketing algorithms for computing
lower/upper expectations.
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Constant density ratio class

Set of distributions P such that

P (A)

P (B)
≤ α

P0(A)

P0(B)
,

for distribution P0 and α > 1.

Class is preserved by conditioning/marginalization!
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One great (obscure) idea

Wasserman and Kadane (1982) observed that for some
classes (total variation, constant bounded, constant
ratio),

it is possible to sample from the “center” P0 of the
neighborhood, and compute lower expectations.

One of the few cases where a sampling algorithm has
been applied to credal sets.

It would be nice to see other sampling methods, but
hard to imagine how to do it.
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And 2-monotone capacities

If a credal set satisfies

P (A ∪ B) ≥ P (A) + P (B) − P (A ∩ B) ,

it is 2-monotone.

Examples: ε-contaminated, total variation, density
bounded.

Define FX(x) = P (X ≤ x); then

E[X] =

∫ ∞

−∞
x dFX(x).

Also,

P (A|B) =
P (A ∩ B)

P (A ∩ B) + P (Ac ∩ B)
.
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And belief functions

A capacity that is infinitely monotone; that is, for any n,

P (∪n
i=1Ai) ≥

∑

J⊂1,...,n

(−1)|J |+1P (∩i∈JAi) .

These are basic entities in Dempster-Shafer theory.

They can always be expressed as a probability mass
assignment and a multi-valued mapping.

Useful:
E[X] =

∑

A

m(A) inf
ω∈A

X(ω).

Algorithms for Imprecise ProbabilityPart I – p. 68/79



Probability boxes (p-boxes)

Take two nondecreasing functions F and F such that

F ≤ F.

The set of distributions such that

{P : F ≤ F ≤ F}.

is a p-box.

There has been work on risk assessment and reliability
analysis with p-boxes: often discretization of continuous
possibility spaces and then linear programming.
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Changing gears: Decision making

Set of acts A, need to choose one.
There are several criteria!

Γ-minimax:
arg max

X∈A
E[X] .

Maximality: maximal elements of the partial order �.
That is, X is maximal if

there is no Y ∈ A such that EP [Y − X] > 0 for all P ∈ K.

E-admissibility: maximality for at least a distribution.
That is, X is E-admissible if

there is P ∈ K such that EP [X − Y ] ≥ 0 for all Y ∈ A.

Maximax, interval dominance, etc.
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Comparing criteria

Three acts: a1 = 0.4; a2 = 0/1 if A/Ac; a3 = 1/0 if A/Ac.

6
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@
@

@
@

@ P (A)

E[ai]

P (A) ∈ [0.3, 0.7].
Γ-minimax: a1; Maximal: all of them; E-admissible: {a2, a3}.
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Exercise

Credal set {P1, P2}:

P1(s1) = 1/8, P1(s2) = 3/4, P1(s3) = 1/8,

P2(s1) = 3/4, P2(s2) = 1/8, P2(s3) = 1/8,

Acts {a1, a2, a3}:

s1 s2 s3

a1 3 3 4

a2 2.5 3.5 5

a3 1 5 4.

Which one to select?
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Solution

P1(s1) = 1/8, P1(s2) = 3/4, ; P1(s3) = 1/8, P2(s1) = 3/4, P2(s2) = 1/8, P2(s3) = 1/8.

Acts {a1, a2, a3}:

s1 s2 s3

a1 3 3 4

a2 2.5 3.5 5

a3 1 5 4.

Then:

E1[a1] = 3/8 + 18/8 + 4/8 = 25/8;

E1[a2] = 2.5/8 + 21/8 + 5/8 = 28.5/8;

E1[a3] = 1/8 + 15/8 + 4/8 = 35/8.

E2[a1] = 18/8 + 3/8 + 4/8 = 25/8;

E2[a2] = 15/8 + 3.5/8 + 5/8 = 23.5/8

E2[a3] = 2/8 + 5/8 + 4/8 = 11/8.
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A quick discussion

Limited to finite set of acts.

Consider Γ-minimax:
Compute E[ai] for each act.
Select act with highest E[ai].

(Considerable minimax theory in Berger’s book (1985).)
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Maximality

Find Γ-minimax solution a0.

For each other act ai 6= a0, verify whether

EP [a0 − ai] ≥ 0;

for all P ; if so, discard ai.

That is, verify whether

E[a0 − ai] ≥ 0.
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E-admissibility

For each act ai:
Collect all constraints that must be satisfied by P .
Add constraints

EP [ai − aj ] ≥ 0

for every aj 6= ai.
If all these constraints can be satisfied for some P ,
then ai is E-admissible.

This scheme can be extended to problems with mixed
acts (Utkin and Augustin 2005).
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Exercise

Credal set {P1, P2}:

P1(s1) = 1/8, P1(s2) = 3/4, P1(s3) = 1/8,

P2(s1) = 3/4, P2(s2) = 1/8, P2(s3) = 1/8,

Acts {a1, a2, a3}:

s1 s2 s3

a1 3 3 4

a2 2.5 3.5 5

a3 1 5 4.

Which one to select?
And if we take convex hull of credal set?
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Solution

P1(s1) = 1/8, P1(s2) = 3/4, ; P1(s3) = 1/8, P2(s1) = 3/4, P2(s2) = 1/8, P2(s3) = 1/8.

Acts {a1, a2, a3}:

s1 s2 s3

a1 3 3 4

a2 2.5 3.5 5

a3 1 5 4.

Consider P = αP1 + (1 − α)P2.

Then:

EP [a2 − a1] = 10α − 3 ≥ 0; α ≥ 3/10.

And:

EP [a2 − a3] = −30α + 17 ≥ 0; α ≤ 17/30.
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Conclusion

Goal of this talk: overview of some central ideas without
independence.

Basic tool is linear programming (column generation,
etc).

Full conditional measures require special tools.

There are many special kinds of credal sets with
associated algorithms: neighborhoods, capacities, etc.

Decision making (severa criteria) requires such
calculations.
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