Exercises: Algorithms for Imprecise Probability and Credal networks

Fabio G. Cozman ${ }^{1}$ and Cassio P. de Campos ${ }^{2}$

${ }^{1}$ Engineering School, University of São Paulo
São Paulo, SP, Brazil
${ }^{2}$ Rensselaer Polytechnic Institute
Troy, NY, USA

SIPTA School, July, 2008

Build linear program:

- $P(A) \geq \alpha$.
- $B \rightarrow C$.
- $P(B)=\beta$.

Can you give bounds for $P(A \wedge B \wedge C)$?

Coletti and Scozzafava (1999).

- Take H_{1}, H_{2}, H_{3}.
- Assume $H_{3} \subset H_{1}^{c} \cap H_{2}$.
- Assessments $P\left(H_{1}\right)=1 / 2, P\left(H_{2}\right)=1 / 5, P\left(H_{3}\right)=1 / 8$.

Build linear program.

Coletti and Scozzafava (1999).

- Take H_{1}, H_{2}, H_{3}.
- Assume $H_{3} \subset H_{1}^{c} \cap H_{2}$.
- Assessments $P\left(H_{1}\right)=1 / 2, P\left(H_{2}\right)=1 / 5, P\left(H_{3}\right)=1 / 8$.
- Also, $P\left(H_{2} \mid H_{1} \cup H_{2}\right) \geq 1 / 2$.

Build linear program.

- Take H_{1}, H_{2}, H_{3}.
- Assume $H_{3} \subset H_{1}^{c} \cap H_{2}$.
- Assessments $P\left(H_{1}\right)=1 / 2, P\left(H_{2}\right)=1 / 5, P\left(H_{3}\right)=1 / 8$.

Build linear program to compute $\underline{P}\left(H_{1} \mid H_{1} \cup H_{2}\right)$, applying the Charnes-Cooper transformation.

Consider a variable X with 3 possible values x_{1}, x_{2} and x_{3}. Suppose the following assessments are given:

$$
\begin{gathered}
p\left(x_{1}\right) \leq p\left(x_{2}\right) \leq p\left(x_{3}\right) ; \\
p\left(x_{i}\right) \geq 1 / 20 \quad \text { for } i \in\{1,2,3\} ; \\
p\left(x_{3} \mid x_{2} \cup x_{3}\right) \leq 3 / 4 .
\end{gathered}
$$

Show the credal set determined by these assessments in baricentric coordinates.

Consider assessments:

- $P(A) \geq 1 / 2$.
- $P\left(A^{c} \cap B^{c}\right)=1 / 2$.
- $P\left(C \mid A^{c} \cap B\right)=1 / 3$.

What is the Krauss-Dubins representation?
What is $P(C \mid B)$?
What is $P\left(C^{c} \mid A^{c} \cap B\right)$?

- If $K(X)$ is an ϵ-contaminated class, what are

$$
\underline{E}[f(X)], \quad \bar{E}[f(X)] ?
$$

- If P_{0} is always nonzero, what is

$$
\underline{P}(A \mid B), \quad \bar{P}(A \mid B) ?
$$

- If one gives a measure L such that

$$
L(\Omega)<1
$$

is this an ϵ-contaminated class?
If so, what are P_{0} and ϵ ?

Credal set $\left\{P_{1}, P_{2}\right\}$:

$$
\begin{array}{lll}
P_{1}\left(s_{1}\right)=1 / 8, & P_{1}\left(s_{2}\right)=3 / 4, & P_{1}\left(s_{3}\right)=1 / 8 \\
P_{2}\left(s_{1}\right)=3 / 4, & P_{2}\left(s_{2}\right)=1 / 8, & P_{2}\left(s_{3}\right)=1 / 8
\end{array}
$$

Acts $\left\{a_{1}, a_{2}, a_{3}\right\}$:

	s_{1}	s_{2}	s_{3}
a_{1}	3	3	4
a_{2}	2.5	3.5	5
a_{3}	1	5	4.

Which one to select?

Credal set $\left\{P_{1}, P_{2}\right\}$:

$$
\begin{array}{lll}
P_{1}\left(s_{1}\right)=1 / 8, & P_{1}\left(s_{2}\right)=3 / 4, & P_{1}\left(s_{3}\right)=1 / 8 \\
P_{2}\left(s_{1}\right)=3 / 4, & P_{2}\left(s_{2}\right)=1 / 8, & P_{2}\left(s_{3}\right)=1 / 8
\end{array}
$$

Acts $\left\{a_{1}, a_{2}, a_{3}\right\}$:

	s_{1}	s_{2}	s_{3}
a_{1}	3	3	4
a_{2}	2.5	3.5	5
a_{3}	1	5	4.

Which one to select?
And if we take convex hull of credal set?

- Show: The Markov condition implies

$$
p\left(X_{1}, \ldots, X_{n}\right)=\prod_{i} p\left(X_{i} \mid p a\left(X_{i}\right)\right) .
$$

- Evaluate $p(a \mid e)$ using the Bayesian network just defined. Count the number of multiplications that you need to find the solution.
- Find $\arg \max _{A, C \mid d} p(A, C \mid d)$ using the same Bayesian network.
- Using the following Bayesian network, verify which are true: $(A \Perp H \mid F),(G \Perp E \mid C),(G \Perp E \mid A),(B \Perp E \mid A, D)$, $(G \perp H \mid F)$.

- Give a set of independence relations that can be encoded using a Bayesian network (and show such network) but cannot be encoded using a Markov Random Field.
- Use maximum likelihood to estimate the parameters of the following Bayesian network.
- Repeat using a Dirichlet model with $s=1$ and uniform $\tau(X \mid p a(X))$.

$$
p(x \mid p a(X))=\frac{n_{x, p a(X)}+s \cdot \tau(x \mid p a(X))}{n_{p a(X)}+s}
$$

A	B	C	D	E
a	$\neg b$	$\neg c$	$\neg d$	$\neg e$
a	b	$\neg c$	d	$\neg e$
a	$-b$	c	d	$\neg e$

- Evaluate $\bar{p}(a \mid e)$ using the following credal network.

$p(a) \in[0.1,0.3], p(c \mid a)=0.5, p(c \mid \neg a)=0.8, p(e \mid c) \in$ $[0.6,0.9], p(e \mid \neg c)=0.5, p(b \mid \neg a) \in[0.1,0.5], p(d \mid b, c) \in$ $[0.1,0.5], p(d \mid \neg b, c)=0.2$ and other parameters are vacuous.
- Translate the credal network into a Bayesian network using the CCM transformation.
- Find a parameterization that respects the credal network and maximizes the entropy in each local conditional distribution.
- Use Imprecise Dirichlet Model to learn new intervals to the credal network. Use $s=1$.

A	B	C	D	E
a	$\neg b$	$\neg c$	$\neg d$	$\neg e$
a	b	$\neg c$	d	$\neg e$
a	$-b$	c	d	$\neg e$

$p(a) \in[0.1,0.3], p(c \mid a)=0.5, p(c \mid \neg a)=0.8, p(e \mid c) \in$ $[0.6,0.9], p(e \mid \neg c)=0.5, p(b \mid \neg a) \in[0.1,0.5], p(d \mid b, c) \in$ $[0.1,0.5], p(d \mid \neg b, c)=0.2$ and other parameters are vacuous.

- Show how to translate a Bayesian network MAP problem to a credal network belief updating inference.
- Prove that credal MPE in separately specified polytrees can be solved by MPE in polytree Bayesian networks.
- Show that $A / R+$ provides outer approximations for the credal belief updating problem.
- In polytrees, which reformulation usually produces a simpler optimization program: variable elimination or the bilinear translation idea? Explain your answer.
- Show that no additional constraints is useful while treating binary networks. Provide a useful constraint that could be propagated in a ternary credal network.

Obtain the optimization problem for the following PPL network:

- Three boolean variables A, B, C.
- Logical sentence: $\psi=a \vee c$.
- Probabilistic logic sentence: $p(\phi) \leq 0.3$, where $\phi=\neg a \vee b$.
- Local credal sets $K(A), K(B \mid a), K(B \mid \neg a), K(C)$.

