
Pairing Model-Theoretic Syntax and Semantic
Network for Writing Assistance

Jean-Philippe Prost and Mathieu Lafourcade

LIRMM – 161, rue Ada – 34095 Montpellier Cedex 5 – France
{Prost,Lafourcade}@lirmm.fr

Abstract. In this paper we investigate the possibility of a syntax–
semantics inferface between a framework for Model-Theoretic Syntax
on one hand and a semantic network on the other hand. We focus on
exploring the ability of such a pairing to solve a collection of grammar
checking problems, with an emphasis on cases of missing words. We dis-
cuss a solution where constraint violations are interpreted as grammar
errors and yield the re-generation of new candidate parses (partially un-
realised) through tree operations. Follows a surface realisation phase,
where missing words are filled through semantic network exploration.

1 Introduction

Model-Theoretic Syntax (MTS) refers to a family of frameworks for formal syn-
tax, which is grounded in the Model Theory — unlike Generative-Enumerative
Syntax (GES), such as the Chomskyan syntax, which originates from Proof The-
ory. In very general terms, an MTS framework considers that a (given) syntax
structure is a model of the grammar G, seen as a set of independent logical state-
ments, if and only if it meets every statement in G. For what we are interested in
in this paper, it is important to note that: (i) the two problems of model genera-
tion and model recognition are kept separate, and (ii) every grammar statement
may be evaluated independently from the rest of the grammar.

Many of the differences between the two families with respect to linguistic
knowledge representation have been discussed by Pullum and Scholz (21). The
ability of MTS, unlike GES, to represent linguistic information about quasi-
expressions1, that is, utterances which present grammar irregularities, is the
main point of interest here. As we are going to show it, that linguistic knowledge
which we have about the syntax of quasi-expressions directly serves the purpose
of error detection and correction.

Meanwhile, a drawback of MTS for phrase structure grammar is a lack of
syntax–semantics interface, which, beyond compositionality, would take advan-
tage of the fine-grained information made available next to the phrase structure.
To the best of our knowledge the work from Dahl and Gu (9) is the only excep-
tion. It extends Property Grammar (Blache 4) with semantic predicates, which
further constrain the specification of categories as any other assertion. Those

1 Sometimes also referred to as non-canonical input in the literature.

semantic predicates essentially introduce different kinds of semantic relation-
ships among lexical items. Those are mostly domain-specific, derived from a
biomedical ontology. A semantic form is built through the parsing process by
compositionality. Meanwhile, there seems to be no attempt to take advantage of
the linguistic knowledge embodied in every property satisfied or violated by the
parse tree.

In this paper, we address the same problem of the syntax–semantics inter-
face for Property Grammar (PG) but from a different angle; we investigate the
possibility to pair an MTS framework with a semantic network. We explore, es-
pecially, how such a pairing can serve the purpose of grammar error correction,
and focus on cases of missing words. We show how, beyond compositionality,
the constraints can interact with the phrase structure to build a more detailed
semantic representation than with the phrase structure alone. Starting from an
approximated parse for a quasi-expression missing a word, the process oper-
ates specific tree transformations according to the detected error, in order to
generate a new set of candidate corrected trees. The characterisation of those
candidate models let us build the messages with which the semantic network is
then queried, in search for the missing word.

In section 2 we present briefly the theoretical background we are working
with; in section 3 we detail how we adapt that theoretical framework to the
semantic roles required by the semantic network; then in section 4 we present
how an approximated parse is turned into a candidate corrected parse by re-
generation; finally, section 5 describes how to explore a semantic network in
order to fill missing words.

2 Property Grammar

The framework we are using for knowledge representation is Property Grammar
(Blache 4)2 (PG), for which a model-theoretical semantics was axiomatised by
Duchier et al. (11). Intuitively, a PG grammar decomposes what would be rewrite
rules of a generative grammar into atomic syntactic properties — a property
being represented as a boolean constraint. Take, for instance, the rewrite rule
NP→ D N. That rule implicitly informs3 on different properties (for French): (1)
NP has a D child; (2) the D child is unique; (3) NP has an N child; (4) the N
child is unique; (5) the D child precedes the N child; (6) the N child requires the
D child. PG defines a set of axioms, each axiom corresponding to a constraint
type. The properties above are then specified in the grammar as the following
constraints: (1) NP : 4D; (2) NP : D!; (3) NP : 4N; (4) NP : N!; (5) NP : D ≺ N; (6)
NP : N⇒ D. A PG grammar is traditionally presented as a collection of Categories
(or Constructions), each of them being specified by a set of constraints. Table 1
shows an example of categories.

2 Property Grammars closely follows from the 5P Paradigm introduced by Bès and
Blache (3).

3 The rule is assumed to be the only one for NP.

These constraints can be independently verified, hence independently satis-
fied or violated. The parsing problem is, thus, a Constraint Satisfaction Problem
(CSP), where the grammar is the constraint system to be satisfied. In the Model-
Theoretic (MT) axiomatisation the class of models we are working with is made
up of trees labelled with categories, whose surface realisations are the sentences
σ of the language. A syntax tree of realisation the expression (i.e well-formed
sentence) σ is a strong model for the PG grammar G iff it satisfies every pertinent
constraint4 in G.

The loose semantics also allows for constraints to be relaxed. Informally, a
syntax tree of realisation the quasi-expression (i.e. ill-sentence) σ is a loose model
for G iff it maximises the proportion of satisfied constraints in G with respect to
the total number of pertinent ones (i.e. evaluated) for a given category. Such a
loose model is called an approximated parse.

The set of all the satisfied constraints and all the violated ones for a modelM
is called the model’s characterisation. It provides fine-grained information about
every node in the model, which complements usefully the sole phrase structure.
The violated constraints, especially, naturally point out grammar errors.

On the downside, although the formal model is quite elegant in practice the
size of the search space makes the parsing problem blow up exponentially. As
emphasized by Duchier et al. (10), who implemented a parser as a genuine CSP
based on the MT axiomatisation, the practical issue is not so much finding the
best model (for which existing constraint programming techniques are quite ef-
ficient) as proving its optimality. The reason for that comes from the need to
explore the entire class of models in order to address the decision problem. Yet,
such an implementation does actually keep separate the generation of models
from their checking, which opens the door to different, and more efficient, per-
spectives.

One of them is to reduce the search space to the subset of models, which
are statistically the most significant. It can easily be achieved by any stochastic
robust parser, or even a combination of them. That subset can even be completed
with models for which the statistical significance is unknown, but which were
generated by symbolic parser according to linguistic judgements. The Sygfran
parser (Chauché 7), for instance, is one of the latter. Provided such a small subset
as search space the combinatorial explosion is avoided. Each model can, then,
easily be completed with its characterisation. Incidently, it is interesting to notice
that such an architecture makes it possible to overcome an important decision
problem met by statistical robust parsing with respect to the grammaticality of
sentence, and despite the fact that a parse tree is generated for it. That problem
makes authors such as Wagner et al. (24) or Wong and Dras (25), among others,
say that those robust parsers are too robust. Once the parses are characterised
the decision about the grammaticality of a sentence is straightforward.

4 As defined by Duchier et al. (11), a pertinent constraint is an instance of a property,
which verifies the pertinence predicate Pτ . Intuitively, an instance of a property (or
constraint) is pertinent at a node if the node’s category and those of its children are
in use in the property’s definition; the constraint is otherwise trivially satisfied.

Another incentive is that it makes it a framework for comparing different
parsers’ outcomes over the same corpus. This is particularly interesting when it
comes to quasi-expressions, for which there exists neither a linguistic theory nor
an empirical consensus as to what an approximated parse should be. Further
works should consider running such a comparison and addressing the question
of parse quality, more especially on a corpus with a large number of ill-sentences.

3 Functional and Semantic Roles

The Dependency property in PG is the (only) property meant to model a se-
mantic relationship between two constituents. According to the definition given
in Blache (5), the dependeny property5 c0 : c1 c2 holds for the parent con-
stituent of category c0 between two children constituents of categories c1 and
c2 if those two children constituents are semantically compatible. Intuitively, the
role of that property in the grammar (still in (Blache 5)) is first to specify the
existence of a predicative structure for the governor, and second to constrain the
argument structure through the constituents feature structures.

That rather permissive definition is unclear as how the semantic compatibility
between categories must be checked. The lack of conditional satisfaction makes
it a property which can not be violated: either it holds true for two constituents,
or it is non-pertinent, but it never fails. The rationale in Blache’s proposal for
such a semantics is to include in the characterisation of a sentence pieces of infor-
mation regarding the existence of dependency relationships among constituents.
VanRullen (23) takes a different perspective and defines for the Dependency
property a semantics where the dependency relation between two categories is
conditioned by feature agreement (e.g. in gender, number, person, . . .) through
feature unification.

In (Duchier et al. 10) the Dependency property is not axiomatised due to that
lack of conditional satisfaction. Yet, the idea to combine phrase structure and
dependency structure within the same information structure is elegant and quite
convenient for interfacing syntax and semantics. Therefore we follow Blache’s
proposal on the Dependency property, which we modify slightly in order to be
able to specify functional roles within a sentence and the way they propagate
through the phrase structure. The property is conditioned either by the sole
existence of the governor and the modifier nodes, as in the original proposal, or by
feature values. Unlike in Blache, roles are feature values as opposed to features.
Predicate subcategorisation schemes, especially, may serve to specify different
arguments. The schemes for the verb plaider (to plead), given in Figure 1, come
from the LexSchem resource (Messiant 19). Each argument category and role is
then propagated in the phrase structure through Dependency properties. This
way, it is possible to use the Dependency property to infer semantic roles from
functional ones. In Table 1, for instance, the VP category specifies a Dependency
between a V and an NP, where the NP’s semantic role is PAT (patient) whenever

5 We use the notation introduced by Duchier et al. (11).

phon
〈
plaider

〉
subcat

〈
arg

pos 0

role SUBJ

cat NP

〉

phon

〈
plaider

〉
subcat

〈
arg

pos 0

role SUBJ

cat NP

, arg
pos 1

role P-OBJ

cat pour-PP

〉

phon

〈
plaider

〉
subcat

〈
arg

pos 0

role SUBJ

cat NP

, arg
pos 1

role OBJ

cat NP

〉

Fig. 1. Subcategorisation schemes for the verb plaider (to plead).

the V expects an object. Note that this should be refined whenever possible
depending on the domain of values available for the semantic roles. A domain,
for instance, which would make a distinction between a patient and a recipient
role would benefit from a Dependency property where a P-OBJ (for-object) is
turned into a recipient role.

4 Re-generation and Completion Message

Given a quasi-expression, an approximated parse tree for it, and its characteri-
sation, is it possible to automatically infer candidate corrected syntax trees? To
address that question we consider that every constraint failure in the character-
isation can be interpreted positively either as a tree transformation operation or
as an operation over feature structures. Those operations can be seen as grammar
corrections.

Re-generation Take the example from Figure 2, where the constituent NP2

violates the constraint NP : N⇒ D (within an NP constituent an N requires a D).
In order for that constraint to be satisfied it is sufficient to transform the NP2

S

NP1

D

Les
The

N

employés
employees

VP

V

ont
have

V

rendu
delivered

*NP2

N

rapport
report

AP

Adv

très
very

A

complet
complete

PP

P

à
to

NP3

D

leur
their

N

employeur
employer

NP2′

D

X

N

rapport
report

AP

très complet
very complete

NP2′′

N

rapport
report

D

X

AP

. . .

NP2′′′

N

rapport
report

AP

. . .

D

X

Fig. 2. Approximated parse for quasi-expression, and re-generated sub-trees

node by insertion of a daughter node labelled with the category D. This operation
generates three sub-trees, illustrated in Figure 2. Three new candidate trees are
then obtained by replacement of the NP2 node by each of the three sub-trees.

S (Utterance)
Obligation : 4VP
Uniqueness : NP!

: VP!
Linearity : NP ≺ VP

Dependency : VP

role PRED

subcat

〈
arg

pos 0
role SUBJ

cat NP

〉
 NP[role AGT]

NP (Noun Phrase)

head N | NP
gend gend
num num
role role

Obligation : 4(N ∨ Pro)
Uniqueness : D!

: N!
: PP!
: Pro!

Linearity : D ≺ N
: D ≺ Pro
: D ≺ AP
: N ≺ PP

Requirement : N⇒ D
: AP⇒ N

Exclusion : N 6⇔ Pro

Agreement : N

[
gend 1

num 2

]
↔ D

[
gend 1

num 2

]
VP (Verb Phrase)

[
head V

subcat
〈
V.subcat

〉]
Obligation : 4V
Uniqueness : V[main past part]!

: NP!
: PP!

Linearity : V ≺ NP
: V ≺ Adv
: V ≺ PP

Requirement : V[past part] ⇒ V[aux]
Exclusion : Pro[acc] 6⇔ NP

: Pro[dat] 6⇔ Pro[acc]

Dependency : V

role PRED

subcat

〈
arg

[
role OBJ | P-OBJ | A-OBJ
cat NP

]〉 NP[role PAT]

: V

role PRED

subcat

〈
arg

[
role OBJ | P-OBJ | A-OBJ
cat PP

]〉 PP[role PAT]

Table 1. Example property grammar for French

The multiple results are not a problem in that case, since they can easily be
disambiguated through a new check of the grammar constraint system, that is,
through the characterisation of each of the three new models. The sub-tree NP2′

is the only one meeting all the grammar constraints.

The sets of candidate sub-trees are generated using the following tree oper-
ations, where τ is a tree, and c, c1, c2 are node labels (i.e. categories):

– Node insertion, denoted by τ ↓ c

– Node deletion, denoted by τ - c

– Node permutation, denoted by c1
τ↔ c2

After generalisation, every PG property corresponds to a transformation tree
operation:

Property Violated instances Tree operation

Requirement Iτ [[c0 : c1 ⇒ s2]] τ ↓ s2
Obligation Iτ [[c0 : 4c1]] τ ↓ c1

Linearity Iτ [[c0 : c1 ≺ c2]] c1
τ↔ c2

Uniqueness Iτ [[c0 : c1!]] τ - c1
Exclusion Iτ [[c0 : c1 6⇔ c2]] τ - c1 ∪ τ - c2

Completion Message After re-generation and re-characterisation partial phrase
structures are obtained, which contain underspecified nodes, including empty
leaves (denoted by X in our figures). Those correspond to lexical items to be
found through exploration of the semantic network. In the following, to illus-
trate the process we narrow down the scope of investigation and focus on cases
of missing predicate. Figure 3 illustrates a candidate re-generated model for the
quasi-expression *L’avocat le dossier de son client (*The lawyer his client’s file).
In order to complete the NP2’s surface realisation the exploration process of the

S

NP1

L’avocat

VP

V

X

NP2

NP3

le dossier

PP

de son client

Fig. 3. Candidate re-generated model for quasi-expression

semantic network is fed with messages about the semantic relationships the miss-
ing predicate is involved in. Those messages take the form of triples 〈a, :R, b〉,
where :R denotes an oriented semantic relation, and a and b its ordered elements.
Examples of relations in use in the rezoJDMFR network (Lafourcade and Jou-
bert 16) are Agent, Patient, Instrument, Succession, . . . , though at this stage
we limit ourselves to the Agent and Patient ones. The messages are built from
gathering the relevant information in the model’s characterisation.

Following up with the example sentence from Figure 3, we know from VP

that NP2 is in a Patient relationship with the predicate V, which gives us a value
for R in message]1. NP2 takes its head from NP3 by propagation, which takes
its own from the noun dossier (file). That gives us a value for a in message
]1. The last message member is instantiated with the wildcard X, hence the
message]1: 〈X, :PAT, dossier〉. As for the members of message]2, they come

from the knowledge in S that NP1 is in an Agent relationship with VP, which by
inheritance let us instantiate b with the value avocat (lawyer). That gives us, for
message]2, 〈avocat, :AGT, X〉.

In the end we get the following list of messages:
{〈X, :PAT, dossier〉, 〈avocat, :AGT, X〉}.

5 Propagation

For our experiments, we make use of a lexical network that has been constructed
by means of a (serious) game available on the net : JeuxDeMots. A propagation
algorithm combining constraints and this network is presented.

5.1 A lexical network...

The structure of the lexical network we are building and using is composed of
nodes and links between nodes, as it was initially introduced in the end of 1960s
by Collins and Quillian (1) (developed by Sowa (13)), used in the small worlds
by Gaume et al. (12), and more recently clarified by Polguère (2). A node of the
network refers to a term (or a multiple word expression), usually in its canonical
form (lemma). The links between nodes are typed and are interpreted as a pos-
sible relation holding between the two terms. Some of these relations correspond
to lexical functions, some of which have been made explicit by Mel’cuk (18)
and Polguère (2). It would have been desirable the network to contain all those
lexical functions, but considering the principle of our software JeuxDeMots, it
is not reasonably feasible. Indeed, some of these lexical functions are too much
specialized; for example, Mel’cuk et al. (18) make the distinction between the
Conversive, Antonym and Contrastive functions. They also consider refinements,
with lexical functions characterized as wider or more narrow. JeuxDeMots being
intended for users who are simple Internet users, and not necessarily experts in
linguistics, such functions could have been badly interpreted by them. Further-
more, some of these functions are too poorly lexicalized, that is, very few terms
possess occurrences of such relations; it is for example the case of the functions
of Metaphor or Functioning with difficulty. More formally, a lexical network is a
graph structure composed of nodes (vertices) and links.

– A node is a 3-tuple : <name, type, weight>

– A link is a 4-tuple : <start-node, type, end-node, weight>

The name is simply the string holding the term. The type is an encoding
referring to the information holding by the node. For instance a node can be
a term or a Part of Speech (POS) like :Noun, :Verb. The link type refer to
the relation considered. A node weight is interpreted as a value referring to the
frequency of usage of the term. The weight of a relation, similarly, refers to the
strength of the relation.

JeuxDeMots possesses a predetermined list of relation types, and for now the
players cannot add new types. Relation types fall into several categories:

– Lexical relations: synonymy, antonymy, expression, lexical family These types
of relations are about vocabulary.

– Ontological relations: generic (hyperonymy), specific (hyponymy), part of
(meronymy), whole of (holonymy) . . . It is about relations concerning knowl-
edge in objects of the world.

– Associative relations: free association, associated feeling, meaning It is rather
about subjective and global knowledge; some of them can be considered as
phrasal associations.

– Predicative relations: typical agent, typical patient . . . They are about types
of relation associated with a verb and the values of its arguments (in a very
wide sense). Those are similar (if not identical) to semantic roles, which are
of primary interest for us in this article.

The types of relation implemented in JeuxDeMots are thus of several na-
tures, partially according to a distinction made by Schwab and Lafourcade (8):
some of them are part of knowledge of the world (hyperonymy / hyponymy, for
example), others concern linguistic knowledge (synonymy, antonymy, expression
or lexical family, for example). Most players do not make this distinction which
remains often vague for them. Here, the word relation has to be understood as
an occurrence of relation, and not as a type of relation. Let us note that between
two same terms, several relations of different types can exist.

5.2 ... a game for building it...

To ensure a system leading to quality and consistency of the base, it was de-
cided that the validation of the relations anonymously given by a player should
be made by other players, also anonymously. Practically, a relation is considered
valid if it is given by at least one pair of players. This process of validation is
similar to the one used by von Ahn et al. (14) for the indexation of images or
more recently by Lieberman et al.(15) to collect common sense knowledge. As
far as we know, this was never done in the field of the lexical networks. In Nat-
ural Language Processing, some other Web-based systems exist, such as Open
Mind Word Expert (Mihalcea and Chklovski 22) that aims to create large sense
tagged corpora with the help of Web users, or SemKey (Marchetti et al. 17) that
exploits WordNet and Wikipedia in order to disambiguate lexical forms to refer
to a concept, thus identifying a semantic keyword.

A game takes place between two players, in an asynchronous way, based on
the concordance of their propositions. When a first player (A) begins a game, an
instruction concerning a type of competence (synonyms, opposite, domains, . . .)
is displayed, as well as a term T randomly picked in a base of terms. This player
A has then a limited time to answer by giving propositions which, to his mind,
correspond to the instruction applied to the term T. The number of propositions
which he can make is limited inducing players not just type anything as fast as
possible, but to have to choose amongst all answers he can think of. The same

term, along the same instruction, is later proposed to another player B; the pro-
cess is then identical. To increase the playful aspect, for any common answer
in the propositions of both players, they receive a given number of points. The
calculation of this number of points (as explained by Lafourcade and Joubert
(16)) is crafted to induce both precision and recall in the feeding of the database.
At the end of a game, propositions made by the two players are showed, as well
as the intersection between these terms and the number of points they win.

According to the JeuxDeMots Web site, at the time of the writing of this pa-
per, the lexical network contains more than 1100000 relations linking more than
230000 terms. Around 900000 games (with a mean of 1 minute per game) have
been played corresponding to approximately 13000 hours (about 550 days) of
cumulative play.

5.3 ... and a propagation algorithm

We devise a quite simple algorithm taking a set of constraints for input. A
constraint here takes a form that is similar to an unweighted relation, that is
to say a 3-tuple : <start-node, type, end-node>. One or both node can be
a free variable with or without information of their POS. This form is directly
mappable to relations in the lexical network. With the previous example, we
have :

– <X, :AGT, avocat> and <X, :AGT, dossier>

Our algorithm is inspired by Page et al. (20) and partially by the LexRank
algorithm (Bouklit and Lafourcade 6). The simple idea is to activate nodes of the
lexical network that are involved in the constraints, and then to propagate acti-
vations along the network. As in practice, the entire network would be too large
to be tractable, we reduce it only to the subset containing the first neighbours
(at distance 1). All links are copied with the original weight when belonging
to one of the constraints, or with weight equal to 1 otherwise. This propaga-
tion approach has been proven be convergent with a power iteration computing
method. To be effective, the main hypothesis is that the set weight linking a
node to its neighbour is considered as representing a probability distribution.

In the above example, an activation of 1 is inited to the node avocat and dossier.
From avocat, all neighbours are copied with a link with a default value of 1, but
those linked by a:AGT link. The process is similar for the node dossier. The
spreading of the activation to a neighbour is done according to the ratio be-
tween this specific link weight. More precisely, the activation propagation from
a node A to B is equal to the activation of A times the ratio of the weight of the
link between A and B with the sum of the link weights from A). The output of
the algorithm is a set of activated terms. In the above example, two terms are
mostly activated: plaider and étudier. Furthermore, the proper specific meaning
of avocat>justice (as lawyer and not avocado) is activated.

RezoJDMFR

full lexical network

RezoJDMFR

subgraph

extraction

A
w2/W

step i step i+1

Fig. 4. Extraction of the lexical network subgraph and propagation of activation along
nodes according to link weights.

6 Conclusion

The near absence of syntax–semantics interface for the Property Grammar frame-
work is a serious impediment to its use for deep processing. Meanwhile, as a
constituency-based MTS framework PG offers formal properties, which make
it especially well-suited to address problems such as grammar error correction.
In this paper we have started exploring the possibility to address the problem
of the syntax–semantics interface through the pairing with a semantic network.
We have shown that the linguistic knowledge contained within PG constraints,
together with a deep phrase structure, allows for the construction of detailed
semantic information about a—possibly ill—sentence. Such semantic informa-
tion could not be gathered by compositional means only. We have also shown
how to use that information to explore a semantic network and find suitable
lexical items to complete a sentence missing words, with an emphasis on missing
predicates.

References

A., C., M.R., Q.: Retrieval time from semantic memory. Journal of verbal learning and
verbal behaviour 8(2), 240–248 (1969)

A., P.: Structural properties of lexical systems: Monolingual and multilingual perspec-
tives. In: Proc. of the Workshop on Multilingual Language Resources and Interop-
erability (COLING/ACL 2006) (2006)

Bès, G., Blache, P.: Propriétés et analyse d’un langage. In: Proc. of the 1999 Conf. on
Traitement Automatique du Langage Naturel (TALN’99) (1999)

Blache, P.: Les Grammaires de Propriétés : des contraintes pour le traitement automa-
tique des langues naturelles. Hermès Sciences (2001)

Blache, P.: Property Grammars: A Fully Constraint-based Theory. In: Christiansen, H.,
Skadhauge, P.R., Villadsen, J. (eds.) Constraint Solving and Language Processing,
LNAI, vol. 3438. Springer (2005)

Bouklit, M., Lafourcade, M.: Propagation de signatures lexicales dans le graphe du
web. In: Proc. of RFIA’2006, Tours, France, (2006)

Chauché, J.: Un outil multidimensionnel de l’analyse du discours. In: Proc. of the 10th
Int’l Conf. on Computational Linguistics and 22nd annual meeting on Association
for Computational Linguistics. pp. 11–15. ACL (1984)

D., S., M., L.: Modelling, detection and exploitation of lexical functions for analysis.
ECTI Journal 2, 97–108 (2009)

Dahl, V., Gu, B.: On semantically constrained property grammars. In: Constraints and
Language Processing. p. 20 (2008)

Duchier, D., Dao, T.B.H., Parmentier, Y., Lesaint, W.: Property Grammar Parsing
Seen as a Constraint Optimization Problem. In: Proceedings of the 15th Intl Con-
ference on Formal Grammar (FG 2010) (2010)

Duchier, D. and Prost, J.-P. and Dao, T.-B.-H.: A model-theoretic framework for gram-
maticality judgements. In: Proc. of FG’09. Lecture Notes in Artificial Intelligence,
vol. 5591. Springer (2009)

Gaume B., D.K., M., V.: Semantic associations and confluences in paradigmatic net-
works. In: Vanhove, M. (ed.) Typologie des rapprochements sémantiques (2007)

J., S.: Semantic networks. Encyclopedia of Artificial Intelligence. edited by S.C.
Shapiro, Wiley, New York (1992)

vonAhn L., L., D.: Labelling images with a computer game. In: Proc. of ACM Conf.
on Human Factors in Computing Systems (CHI) (2004)

Lieberman H., S.D., A., T.: Common consensus: a web-based game for collecting com-
monsense goals. In: Proc. of Int’l Conf. on Intelligent User Interfaces (IUI’07) (2007)

M., L., A., J.: Détermination des sens d’usage dans un réseau lexical construit à l’aide
d’un jeu en ligne. In: Proc. of the Conférence sur le Traitement Automatique des
Langues Naturelles (TALN’08) (2008)

Marchetti A., Tesconi M., R.F.R.M., S., M.: Semkey: A semantic collaborative tagging
system. In: Proc. of SemKey: A Semantic Collaborative Tagging System (2007)

Mel’cuk I.A., Clas A., P.A.: Introduction à la lexicologie explicative et combinatoire.
Ed. Duculot AUPELF-UREF (1995)

Messiant, C.: A Subcategorization Acquisition System for French Verbs. In: Proc. of
the ACL-08: HLT Student Research Workshop. pp. 55–60. ACL (2008)

Page L., S. Brin, R.M., Winograd, T.: The PageRank Citation Ranking : Bringing
Order to the Web. Technical report, Stanford University (1998)

Pullum, G., Scholz, B.: On the Distinction Between Model-Theoretic and Generative-
Enumerative Syntactic Frameworks. In: de Groote, P., Morrill, G., Rétoré, C. (eds.)
Logical Aspects of Computational Linguistics: 4th International Conference. pp.
17–43. No. 2099 in LNAI, Springer Verlag (2001)

R., M., T., C.: Open mind word expert: Creating large annotated data collections with
web users’ help. In: Proc. of the EACL 2003 Workshop on Linguistically Annotated
Corpora (LINC 2003) (2003)

VanRullen, T.: Vers une analyse syntaxique à granularité variable. Ph.D. thesis, Uni-
versité de Provence, Informatique (2005)

Wagner, J., Foster, J., van Genabith, J.: Judging grammaticality: Experiments in sen-
tence classification. CALICO Journal 26(3), 474–490 (2009)

Wong, S., Dras, M.: Parser Features for Sentence Grammaticality Classification. In:
Australasian Language Technology Association Workshop 2010. p. 67 (2011)

